Skip to main content
Log in

miR-542-3p Appended Sorafenib/All-trans Retinoic Acid (ATRA)-Loaded Lipid Nanoparticles to Enhance the Anticancer Efficacy in Gastric Cancers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this study, miR-542-3p appended SRF/ATRA-loaded solid lipid nanoparticle was successfully prepared and demonstrated for its therapeutic efficacy against gastric cancers.

Methods

The particles were nanosized and typically spherical in shape. In vitro release study showed that release of ATRA was significantly slower compared to that of SRF from the NPs.

Results

MTT assay showed that miR-542-3p have a strong inhibitory effect on the proliferation of MGC-803 cancer cells in a typical dose dependent manner. Nanocarrier encapsulation of SRF + ATRA induced a significantly higher cytotoxic effect compared to either individual drug or cocktail combinations indicating that the cellular uptake of different formulations was rate limiting factor in the therapeutic efficacy. Importantly, miR-542-3p-based miSRNP exhibited an extremely significant toxic effect compared to any other treated group. Importantly, miSRNP induced a significantly higher early (~55%) and late (~15%) apoptotic effect in gastric cancer cells. In vivo anticancer analysis results clearly suggest that nanoparticle encapsulation of combination of SRF and miRNA (with miRNA) will have greater antitumor efficacy in tumor mice.

Conclusion

Overall, unique combination of miRNA coupled with SRF + ATRA in a lipid nanocarrier could be a promising therapeutic approach in gastric cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AEG-1:

Astrocyte-elevated gene-1

ATRA:

All-trans retinoic acid

EPR:

Enhanced permeation and retention

PEG:

Polyethylene glycol

SRF:

Sorafenib

SLN:

Solid lipid nanoparticles

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics for Hispanics/Latinos. CA Cancer J Clin. 2012;62:10–29.

    Article  Google Scholar 

  2. Oh SC. Update of adjuvant chemotherapy for resected gastric cancer. J Gastric Cancer. 2012;12:3–6.

    Article  Google Scholar 

  3. Schwarz RE, Smith DD. Clinical impact of lymphadenectomy extent in resectable gastric cancer of advanced stage. Ann Surg Oncol. 2007;14:317–28.

    Article  Google Scholar 

  4. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  5. Schwarz RE, Zagala-Nevarez K. Recurrence patterns after radical gastrectomy for gastric cancer: prognostic factors and implications for postoperative adjuvant therapy. Ann Surg Oncol. 2002;9:394–400.

    Article  Google Scholar 

  6. Cappetta A, Lonardi S, Pastorelli D, Bergamo F, Lombardi G, Zagonel V. Advanced gastric cancer (GC) and cancer of the gastro-oesophageal junction (GEJ): focus on targeted therapies. Crit Rev Oncol Hematol. 2012;81:38–48.

    PubMed  Google Scholar 

  7. Kim do H, Kim MD, Choi CW, Chung CW, Ha SH, Kim CH, et al. Antitumor activity of sorafenib-incorporated nanoparticles of dextran/poly(dl-lactide-co-glycolide) block copolymer. Nanoscale Res Lett. 2012;7:91.

    Article  Google Scholar 

  8. Yang YC, Cai J, Yin J, Zhang J, Wang KL, Zhang ZT. Heparin-functionalized Pluronic nanoparticles to enhance the antitumor efficacy of sorafenib in gastric cancers. Carbohydr Polym. 2016;136:782–90.

    Article  CAS  Google Scholar 

  9. Poojari R, Kini S, Srivastava R, Panda D. Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids Surf B: Biointerfaces. 2016;143:131–8.

    Article  CAS  Google Scholar 

  10. Thapa RK, Choi JY, Poudel BK, Hiep TT, Pathak S, Gupta B, et al. Multilayer-coated liquid crystalline nanoparticles for effective Sorafenib delivery to hepatocellular carcinoma. ACS Appl Mater Interfaces. 2015;7:20360–8.

    Article  CAS  Google Scholar 

  11. Gao DY, TsT L, Sung YC, Liu YC, Chiang WH, Chang CC, et al. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials. 2015;67:194–203.

    Article  CAS  Google Scholar 

  12. Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci. 2007;8:755–65.

    Article  CAS  Google Scholar 

  13. Shimizu K, Tamagawa K, Takahashi N, Takayama K, Maitani Y. Stability and antitumor effects of all-trans retinoic acid-loaded liposomes contained sterylglucoside mixture. Int J Pharm. 2003;258:45.

    Article  CAS  Google Scholar 

  14. Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011;6:345.

    Article  CAS  Google Scholar 

  15. Carneiro G, Silva EL, Pacheco LA, de Souza-Fagundes EM, Corrêa NCR, de Goes AM, et al. Formation of ion pairing as an alternative to improve encapsulation and anticancer activity of all-trans retinoic acid loaded in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:6011.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell. 2004;116:281–97.

    Article  CAS  Google Scholar 

  17. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172–87.

    Article  CAS  Google Scholar 

  18. Zimmerman AL, Wu S. MicroRNAs, cancer and cancer stem cells. Cancer Lett. 2011;300:10–9.

    Article  CAS  Google Scholar 

  19. Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93:1993–2008.

    Article  CAS  Google Scholar 

  20. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:491–504.

    Article  CAS  Google Scholar 

  21. Mody N, Tekade RK, Mehra NK, Chopdey P, Jain NK. AAPS PharmSciTech. 2014;15:388.

    Article  CAS  Google Scholar 

  22. Subedi RK, Kang KW, Choi HK. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37:508.

    Article  CAS  Google Scholar 

  23. Ramasamy T, Khandasami US, Ruttala H, Shanmugam S. Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macromol Res. 2012;20:682–92.

    Article  CAS  Google Scholar 

  24. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  CAS  Google Scholar 

  25. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83:97–111.

    Article  CAS  Google Scholar 

  26. Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, Yong CS, et al. Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014;102:653–61.

    Article  CAS  Google Scholar 

  27. Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US. Characterization of microcapsulated -carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol. 2016;87:101–13.

    Article  CAS  Google Scholar 

  28. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  Google Scholar 

  29. Ramasamy T, Ruttala HB, Kanu BG, Poudel BK, Choi HG, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017; doi:10.1016/j.jconrel.2017.04.043.

    Article  CAS  Google Scholar 

  30. Gupta B, Ramasamy T, Poudel BK, et al. Development of bioactive PEGylated nanostructured platforms for sequential delivery of doxorubicin and imatinib to overcome drug resistance in metastatic tumors. ACS Appl Mater Interfaces. 2017;9(11):9280–90.

    Article  CAS  Google Scholar 

  31. Ramasamy T, Ruttala HB, Chitrapriya N, et al. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater. 2017;48:131–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

The work is funded from the research grant of Huazhong University of Science and Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bo Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Zhang, Y., Meng, YP. et al. miR-542-3p Appended Sorafenib/All-trans Retinoic Acid (ATRA)-Loaded Lipid Nanoparticles to Enhance the Anticancer Efficacy in Gastric Cancers. Pharm Res 34, 2710–2719 (2017). https://doi.org/10.1007/s11095-017-2202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2202-7

Key words

Navigation