Skip to main content
Log in

Pharmacokinetics of Paracetamol in Göttingen Minipigs: In Vivo Studies and Modeling to Elucidate Physiological Determinants of Absorption

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Onset and rate of gastric emptying are important determinants of drug absorption after oral dosing. Therefore, robust estimates of these parameters are needed in physiologically based absorption models to predict reliably plasma concentration time profiles. For human and some other laboratory animals, reasonable parameterization of gastric emptying has been established. However gastric emptying is less well characterized in minipigs, a large animal model rapidly gaining importance in pharmaceutical research.

Methods

A pharmacokinetic crossover study using different dosage forms of paracetamol (intravenous and oral solution, capsule and tablet) was conducted in four male and four female Göttingen minipigs after an overnight fast. Deconvolution analysis was performed to determine the absorption kinetics. Estimated lag times and first order gastric emptying parameters were incorporated in a previously published PBPK model of the minipig and simulations verified. Postmortem assessments of minipig stomachs were made after different fasting protocols.

Results

Fraction of dose absorbed vs. time profiles showed high interindividual variability, comparable to human fed state absorption. Mean gastric transit times were determined to be 0.63 h, 1.36 h, and 0.73 h for solution, capsules, and tablets, respectively. Postmortem assessment confirmed that minipig stomachs were not empty after an overnight fast.

Conclusions

Gastric transit times in overnight fasted minipigs are longer than those observed in humans. This is most likely caused by delayed and incomplete food emptying and further work is needed to develop feasible and effective fasting protocols for minipigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Suenderhauf C, Hammann F, Maunz A, Helma C, Huwyler J. Combinatorial QSAR modeling of human intestinal absorption. Mol Pharm. 2011;8(1):213–24.

    Article  PubMed  CAS  Google Scholar 

  2. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin Pharmacokinet. 1999;36(3):233–54.

    Article  PubMed  CAS  Google Scholar 

  3. Sanjeevi A. Gastric motility. Curr Opin Gastroenterol. 2007;23(6):625–30.

    Article  PubMed  Google Scholar 

  4. Jones HM, Parrott N, Jorga K, Lave T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45(5):511–42.

    Article  PubMed  CAS  Google Scholar 

  5. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos. 1995;16(5):351–80.

    Article  PubMed  CAS  Google Scholar 

  6. Forster R, Bode G, Ellegaard L, van der Laan JW. The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations. J Pharmacol Toxicol Methods. 2010;62(3):236–42.

    Article  PubMed  CAS  Google Scholar 

  7. Monteiro-Riviere NA, Bristol DG, Manning TO, Rogers RA, Riviere JE. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J Investig Dermatol. 1990;95(5):582–6.

    Article  PubMed  CAS  Google Scholar 

  8. Swindle MM, editor. Swine in the laboratory: surgery, anesthesia, imaging and experimental techniques. 2nd ed. Boca Raton: CRC Press; 2007.

    Google Scholar 

  9. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.

    Article  PubMed  CAS  Google Scholar 

  10. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res. 2013;30(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  11. Köttendorf S. Auswirkungen der Vermahlungsintensität (grob, fein) und Konfektionierung (schrotförmig, pelletiert) des Mischfutters auf die Milieubedingungen im Mageninhalt von Schweinen. In: Tierärztliche Hochschule Hannover. Hannover: University of Hannover; 2009. p. 225.

    Google Scholar 

  12. Hänichen T. Stomach ulcers in swine. Tierarztl Prax. 1975;2:191–7.

    Google Scholar 

  13. Bal HS, Ghoshal NG. Histomorphology of the torus pyloricus of the domestic pig (Sus scrofa domestica). Zentralbl Veterinarmed Reihe C Anat Histol Embryol. 1972;1(4):289–98.

    CAS  Google Scholar 

  14. Hossain M, Abramowitz W, Watrous BJ, Szpunar GJ, Ayres JW. Gastrointestinal transit of nondisintegrating, nonerodible oral dosage forms in pigs. Pharm Res. 1990;7(11):1163–6.

    Article  PubMed  CAS  Google Scholar 

  15. Oberle RL, Das H. Variability in gastric pH and delayed gastric emptying in Yucatan miniature pigs. Pharm Res. 1994;11(4):592–4.

    Article  PubMed  CAS  Google Scholar 

  16. Merchant HA, McConnell EL, Liu F, Ramaswamy C, Kulkarni RP, Basit AW, et al. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2011;42(1–2):3–10.

    CAS  Google Scholar 

  17. DeSesso JM, Williams AL. Contrasting the gastrointestinal tracts of mammals: factors that influence absorption. In: Macor JE, editor. Annual reports in medicinal chemistry. The Netherlands: Academic; 2008. p. 353–71.

    Google Scholar 

  18. Wilfart A, Montagne L, Simmins H, Noblet J, Milgen J. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. B J Nutr. 2007;98(1):54–62.

    Article  CAS  Google Scholar 

  19. Aoyagi N, Ogata H, Kaniwa N, Ejima A, Yasuda Y, Tanioka Y. Bioavailability of griseofulvin from plain tablets in Gottingen minipigs and the correlation with bioavailability in humans. J Pharmacobiodyn. 1984;7(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  20. Naslund E, Bogefors J, Gryback P, Jacobsson H, Hellstrom PM. Gastric emptying: comparison of scintigraphic, polyethylene glycol dilution, and paracetamol tracer assessment techniques. Scand J Gastroenterol. 2000;35(4):375–9.

    Article  PubMed  CAS  Google Scholar 

  21. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Forrest JA, Clements JA, Prescott LF. Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet. 1982;7(2):93–107.

    Article  PubMed  CAS  Google Scholar 

  23. Willems M, Quartero AO, Numans ME. How useful is paracetamol absorption as a marker of gastric emptying? A systematic literature study. Dig Dis Sci. 2001;46(10):2256–62.

    Article  PubMed  CAS  Google Scholar 

  24. Finnegan BA, Jyn CA. Paracetamol kinetics and gastric emptying. Br J Anaesth. 1985;57(10):1039–40.

    Article  PubMed  CAS  Google Scholar 

  25. Clements JA, Heading RC, Nimmo WS, Prescott LF. Kinetics of acetaminophen absorption and gastric emptying in man. Clin Pharmacol Ther. 1978;24(4):420–31.

    PubMed  CAS  Google Scholar 

  26. Heading RC, Nimmo J, Prescott LF, Tothill P. The dependence of paracetamol absorption on the rate of gastric emptying. Br J Pharmacol. 1973;47(2):415–21.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Mogi M, Toda A, Iwasaki K, Kusumoto S, Takehara H, Shimizu M, et al. Simultaneous pharmacokinetics assessment of caffeine, warfarin, omeprazole, metoprolol, and midazolam intravenously or orally administered to Microminipigs. J Toxicol Sci. 2012;37(6):1157–64.

    Article  PubMed  CAS  Google Scholar 

  28. Agoram B, Woltosz WS, Bolger MB. Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev. 2001;50 Suppl 1:S41–67.

    Article  PubMed  CAS  Google Scholar 

  29. Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm. 2008;5(5):760–75.

    Article  PubMed  CAS  Google Scholar 

  30. Rodgers T, Leahy D, Rowland M. Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J Pharm Sci. 2005;94(6):1237–48.

    Article  PubMed  CAS  Google Scholar 

  31. A/S, E.G.M., Minipig background data. 2013: Dalmose.

  32. Levitt DG. Quantitation of small intestinal permeability during normal human drug absorption. BMC Pharmacol Toxicol. 2013;14:34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Neirinckx E, Vervaet C, Michiels J, De Smet S, Van den Broeck W, Remon JP, et al. Feasibility of the Ussing chamber technique for the determination of in vitro jejunal permeability of passively absorbed compounds in different animal species. J Vet Pharmacol Ther. 2011;34(3):290–7.

    Article  PubMed  CAS  Google Scholar 

  34. Sjogren E, Bredberg U, Lennernas H. The pharmacokinetics and hepatic disposition of repaglinide in pigs: mechanistic modeling of metabolism and transport. Mol Pharm. 2012;9(4):823–41.

    Article  PubMed  Google Scholar 

  35. Khan S, Elshaer A, Rahman AS, Hanson P, Perrie Y, Mohammed AR. Systems biology approach to study permeability of paracetamol and its solid dispersion. Int J Pharm. 2011;417(1–2):272–9.

    Article  PubMed  CAS  Google Scholar 

  36. Neirinckx E, Vervaet C, De Boever S, Remon JP, Gommeren K, Daminet S, et al. Species comparison of oral bioavailability, first-pass metabolism and pharmacokinetics of acetaminophen. Res Vet Sci. 2010;89(1):113–9.

    Article  PubMed  CAS  Google Scholar 

  37. Skaanild MT, Friis C. Cytochrome P450 sex differences in minipigs and conventional pigs. Pharmacol Toxicol. 1999;85(4):174–80.

    Article  PubMed  CAS  Google Scholar 

  38. Rawlins MD, Henderson DB, Hijab AR. Pharmacokinetics of paracetamol (acetaminophen) after intravenous and oral administration. Eur J Clin Pharmacol. 1977;11(4):283–6.

    Article  PubMed  CAS  Google Scholar 

  39. Chiou WL. Estimation of hepatic first-pass effect of acetaminophen in humans after oral administration. J Pharm Sci. 1975;64(10):1734–5.

    Article  PubMed  CAS  Google Scholar 

  40. Perucca E, Richens A. Paracetamol disposition in normal subjects and in patients treated with antiepileptic drugs. Br J Clin Pharmacol. 1979;7(2):201–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Baranova J, Anzenbacherova E, Anzenbacher P, Soucek P. Minipig cytochrome P450 2E1: comparison with human enzyme. Drug Metab Dispos Biol Fate Chem. 2005;33(6):862–5.

    Article  PubMed  CAS  Google Scholar 

  42. Hinson JA. Reactive metabolites of phenacetin and acetaminophen: a review. Environ Health Perspect. 1983;49:71–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Laine JE, Auriola S, Pasanen M, Juvonen RO. Acetaminophen bioactivation by human cytochrome P450 enzymes and animal microsomes. Xenobiotica Fate Foreign Compd Biol Syst. 2009;39(1):11–21.

    Article  CAS  Google Scholar 

  44. Oberle RL, Das H, Wong SL, Chan KK, Sawchuk RJ. Pharmacokinetics and metabolism of diclofenac sodium in Yucatan miniature pigs. Pharm Res. 1994;11(5):698–703.

    Article  PubMed  CAS  Google Scholar 

  45. Oberle RL, Amidon GL. The influence of variable gastric emptying and intestinal transit rates on the plasma level curve of cimetidine; an explanation for the double peak phenomenon. J Pharmacokinet Biopharm. 1987;15(5):529–44.

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi M, Tomita M. Mechanistic analysis for drug permeation through intestinal membrane. Drug Metab Pharmacokinet. 2007;22(2):67–77.

    Article  PubMed  CAS  Google Scholar 

  47. Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.

    Article  PubMed  CAS  Google Scholar 

  48. Watanabe K, Furuno K, Eto K, Oishi R, Gomita Y. First-pass metabolism of omeprazole in rats. J Pharm Sci. 1994;83(8):1131–4.

    Article  PubMed  CAS  Google Scholar 

  49. Andersson T, Cederberg C, Regardh CG, Skanberg I. Pharmacokinetics of various single intravenous and oral doses of omeprazole. Eur J Clin Pharmacol. 1990;39(2):195–7.

    Article  PubMed  CAS  Google Scholar 

  50. Pilbrant A, Cederberg C. Development of an oral formulation of omeprazole. Scand J Gastroenterol Suppl. 1985;108:113–20.

    Article  PubMed  CAS  Google Scholar 

  51. Kanazu T, Yamaguchi Y, Okamura N, Baba T, Koike M. Model for the drug-drug interaction responsible for CYP3A enzyme inhibition. I: evaluation of cynomolgus monkeys as surrogates for humans. Xenobiotica Fate Foreign Compd Biol Syst. 2004;34(5):391–402.

    Article  CAS  Google Scholar 

  52. Strelevitz TJ, Foti RS, Fisher MB. In vivo use of the P450 inactivator 1-aminobenzotriazole in the rat: varied dosing route to elucidate gut and liver contributions to first-pass and systemic clearance. J Pharm Sci. 2006;95(6):1334–41.

    Article  PubMed  CAS  Google Scholar 

  53. Komura H, Iwaki M. Species differences in in vitro and in vivo small intestinal metabolism of CYP3A substrates. J Pharm Sci. 2008;97(5):1775–800.

    Article  PubMed  CAS  Google Scholar 

  54. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm M. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedeberg’s Arch Pharmacol. 2001;364(6):551–7.

    Article  CAS  Google Scholar 

  55. Tolle-Sander S, Rautio J, Wring S, Polli J, Polli J. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20(5):757–64.

    Article  PubMed  CAS  Google Scholar 

  56. Nusynowitz ML, Benedetto AR. The lag phase of gastric emptying: clinical, mathematical and in vitro studies. J Nucl Med Off Publ Soc Nucl Med. 1994;35(6):1023–7.

    CAS  Google Scholar 

  57. Hellmig S, Von Schoning F, Gadow C, Katsoulis S, Hedderich J, Folsch UR, et al. Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: influence of age, sex and body mass index. J Gastroenterol Hepatol. 2006;21(12):1832–8.

    Article  PubMed  Google Scholar 

  58. Köttendorf S. Auswirkungen der Vermahlungsintensität (grob, fein) und Konfektionierung (schrotförmig, pelletiert) des Mischfutters auf die Milieubedingungen im Mageninhalt von Schweinen. Gießen: Deutsche Veterinärmedizinische Gesellschaft Service GmbH; 2009.

    Google Scholar 

  59. Madsen JL. Effects of gender, age, and body mass index on gastrointestinal transit times. Dig Dis Sci. 1992;37(10):1548–53.

    Article  PubMed  CAS  Google Scholar 

  60. Hou SY, Cowles VE, Berner B. Gastric retentive dosage forms: a review. Crit Rev Ther Drug Carrier Syst. 2003;20(6):459–97.

    Article  PubMed  Google Scholar 

  61. Johansson UB, Eskils J, Adamson U, Elwin CE, Wredling R, Lins PE. A paracetamol-pasta test for assessing gastric emptying in healthy and diabetic subjects. Scand J Clin Lab Invest. 2003;63(2):159–66.

    Article  PubMed  CAS  Google Scholar 

  62. Thomsen C, Rasmussen OW, Christiansen C, Andreasen F, Poulsen PL, Hermansen K. The glycaemic index of spaghetti and gastric emptying in non-insulin-dependent diabetic patients. Eur J Clin Nutr. 1994;48(11):776–80.

    PubMed  CAS  Google Scholar 

  63. Wyse CA, Marshall WG, Preston T, Yam PS. Retention of acetaminophen in an in vitro model of solid-phase gastric emptying of animals. Am J Vet Res. 2007;68(8):895–8.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

H. Lorentsen is employed by the minipig provider Ellegaard Göttingen Minipigs A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Suenderhauf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suenderhauf, C., Tuffin, G., Lorentsen, H. et al. Pharmacokinetics of Paracetamol in Göttingen Minipigs: In Vivo Studies and Modeling to Elucidate Physiological Determinants of Absorption. Pharm Res 31, 2696–2707 (2014). https://doi.org/10.1007/s11095-014-1367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1367-6

KEY WORDS

Navigation