Skip to main content

Advertisement

Log in

Modeling the Yew Tree Tubulin and a Comparison of its Interaction with Paclitaxel to Human Tubulin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To explore possible ways in which yew tree tubulin is naturally resistant to paclitaxel. While the yew produces a potent cytotoxin, paclitaxel, it is immune to paclitaxel’s cytotoxic action.

Methods

Tubulin sequence data for plant species were obtained from Alberta 1000 Plants Initiative. Sequences were assembled with Trinity de novo assembly program and tubulin identified. Homology modeling using MODELLER software was done to generate structures for yew tubulin. Molecular dynamics simulations and molecular mechanics Poisson–Boltzmann calculations were performed with the Amber package to determine binding affinity of paclitaxel to yew tubulin. ClustalW2 program and PHYLIP package were used to perform phylogenetic analysis on plant tubulin sequences.

Results

We specifically analyzed several important regions in tubulin structure: the high-affinity paclitaxel binding site, as well as the intermediate binding site and microtubule nanopores. Our analysis indicates that the high-affinity binding site contains several substitutions compared to human tubulin, all of which reduce the binding energy of paclitaxel.

Conclusions

The yew has achieved a significant reduction of paclitaxel’s affinity for its tubulin by utilizing several specific residue changes in the binding pocket for paclitaxel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1KP:

1000 plants initiative

BLAST:

basic local alignment search tool

MD:

molecular dynamics

MM-PBSA:

molecular mechanics Poisson–Boltzmann surface area

MT:

microtubule

NDGA:

nordihydroguaiaretic acid

ORF:

open reading frames

PDB:

protein data bank

PTX:

paclitaxel

RMSD:

root mean square deviation

REFERENCES

  1. Cragg GML, Kingston DGI, Newman DJ. Anticancer agents from natural products. 2nd ed. Boca Raton: CRC; 2011.

    Book  Google Scholar 

  2. The Alberta 1000 Plants Initiative (Alberta Advanced Education and Technology, Musea Ventures, BGI-Shenzhen, Alberta iCORE, to Wong GKS). Available from: http://www.onekp.com/.

  3. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93(9):2325–7.

    Article  PubMed  CAS  Google Scholar 

  4. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980;77(3):1561–5.

    Article  PubMed  CAS  Google Scholar 

  5. VanBuren V, Odde DJ, Cassimeris L. Estimates of lateral and longitudinal bond energies within the microtubule lattice. Proc Natl Acad Sci U S A. 2002;99(9):6035–40.

    Article  PubMed  CAS  Google Scholar 

  6. Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R, Fiser A, et al. Insights into the mechanism of microtubule stabilization by Taxol. Proc Natl Acad Sci U S A. 2006;103(27):10166–73.

    Article  PubMed  CAS  Google Scholar 

  7. Löwe J, Li H, Downing KH, Nogales E. Refined Structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol. 2001;313(5):1045–57.

    Article  PubMed  Google Scholar 

  8. Nogales E, Wolf SG, Downing KH. Structure of the alpha beta tubulin dimer by electron crystallography. Nature. 1998;391(6663):199–203.

    Article  PubMed  CAS  Google Scholar 

  9. Huzil JT, Ludueña RF, Tuszynski J. Comparative modelling of human β tubulin isotypes and implications for drug binding. Nanotechology. 2006;17(4):S90–S100.

    Article  CAS  Google Scholar 

  10. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.

    Article  PubMed  CAS  Google Scholar 

  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.

    PubMed  CAS  Google Scholar 

  12. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012;40:D48–53.

    Article  PubMed  CAS  Google Scholar 

  13. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–7.

    Article  PubMed  CAS  Google Scholar 

  14. The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012;40:D71–5.

    Article  Google Scholar 

  15. Ludueña RF, Banerjee A. The isotypes of tubulin. In: Fojo T, editor. The role of microtubules in cell biology, neurobiology, and oncology. Totowa: Humana; 2008. p. 123–75.

    Chapter  Google Scholar 

  16. Bernstein FC, Koetzle TF, Williams GJ, Meyer Jr EE, Brice MD, Rodgers JR, et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977;112(3):535–42.

    Article  PubMed  CAS  Google Scholar 

  17. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 9. San Francisco: University of California; 2006.

    Google Scholar 

  18. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65(3):712–25.

    Article  PubMed  CAS  Google Scholar 

  19. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.

    Article  PubMed  CAS  Google Scholar 

  20. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, et al. NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys. 1999;151(1):283–312.

    Article  Google Scholar 

  21. Freedman H, Huzil JT, Luchko T, Ludueña RF, Tuszynski JA. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J Chem Inf Model. 2009;49(2):424–36.

    Article  PubMed  CAS  Google Scholar 

  22. DeLano W. PyMOL Release 0.99. Palo Alto: DeLano Scientific LLC; 2002.

    Google Scholar 

  23. Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH. Microtubule structure at 8 A resolution. Strucr. 2002;10:1317–28.

    Article  CAS  Google Scholar 

  24. Sali A, Blundell TL. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 1993;234(3):779–815.

    Article  PubMed  CAS  Google Scholar 

  25. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993;26(2):283–91.

    Article  CAS  Google Scholar 

  26. Sept D, Baker NA, McCammon JA. The physical basis of microtubule structure and stability. Protein Sci. 2003;12(10):2257–61.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.

    Article  PubMed  CAS  Google Scholar 

  28. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35:W522–5.

    Article  PubMed  Google Scholar 

  29. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004;32:W665–7.

    Article  PubMed  CAS  Google Scholar 

  30. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33(12):889–97.

    Article  PubMed  CAS  Google Scholar 

  31. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 10. San Francisco: University of California; 2008.

    Google Scholar 

  32. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A. 2001;98(18):10037–41.

    Article  PubMed  CAS  Google Scholar 

  33. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, et al. ClustalW and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8(3):275–82.

    PubMed  CAS  Google Scholar 

  35. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

    PubMed  CAS  Google Scholar 

  36. Felsenstein J. PHYLIP—phylogeny inference package (version 3.2). Cladistics. 1989;5:164–6.

    Google Scholar 

  37. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–8.

    Article  PubMed  CAS  Google Scholar 

  38. Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–8.

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura M, Nakazawa J, Usui T, Osada H, Kono Y, Takatsuki A. Nordihydroguaiaretic acid, of a new family of microtubule-stabilizing agents, shows effects differentiated from paclitaxel. Biosci Biotechnol Biochem. 2003;67(1):151–7.

    Article  PubMed  CAS  Google Scholar 

  40. Díaz JF, Valpuesta JM, Chacón P, Diakun G, Andreu JM. Changes in microtubule protofilament number induced by Taxol binding to an easily accessible site. Internal microtubule dynamics. J Biol Chem. 1998;273(50):33803–10.

    Article  PubMed  Google Scholar 

  41. Ross JL, Fygenson DK. Mobility of taxol in microtubule bundles. Biophys J. 2003;84(6):3959–67.

    Article  PubMed  CAS  Google Scholar 

  42. Buey RM, Calvo E, Barasoain I, Pineda O, Edler MC, Matesanz R, et al. Cyclostreptin binds covalently to microtubule pores and lumenal taxoid binding sites. Nat Chem Biol. 2007;3(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  43. Díaz JF, Barasoain I, Souto AA, Amat-Guerri F, Andreu JM. Macromolecular accessibility of fluorescent taxoids bound at a paclitaxel binding site in the microtubule surface. J Biol Chem. 2005;280(5):3928–37.

    Article  PubMed  Google Scholar 

  44. Díaz JF, Barasoain I, Andreu JM. Fast kinetics of Taxol binding to microtubules. Effects of solution variables and microtubule-associated proteins. J Biol Chem. 2003;278(10):8407–19.

    Article  PubMed  Google Scholar 

  45. Mitra A, Sept D. Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules. Biophys J. 2008;95(7):3252–8.

    Article  PubMed  CAS  Google Scholar 

  46. Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, et al. Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther. 2006;5(2):270–8.

    Article  PubMed  CAS  Google Scholar 

  47. Verrills NM, Flemming CL, Liu M, Ivery MT, Cobon GS, Norris MD, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol. 2003;10(7):597–607.

    Article  PubMed  CAS  Google Scholar 

  48. Ludueña RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol. 1998;178:207–75.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

J.A.T. acknowledges support for this research from the Alberta Cancer Foundation, Alberta Advanced Education and Technology, the Allard Foundation, the Canadian Breast Cancer Foundation, and the National Sciences and Engineering Research Council of Canada (NSERC Canada). T.J.A.C. acknowledges funding support for this research from NSERC Canada. G.K.S.W. acknowledges Alberta Advanced Education and Technology, Genome Alberta, Alberta Innovates Tech Futures iCORE, Musea Ventures, and BGI-Shenzhen for the funding of the Alberta 1000 Plants Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack A. Tuszynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuszynski, J.A., Craddock, T.J.A., Mane, J.Y. et al. Modeling the Yew Tree Tubulin and a Comparison of its Interaction with Paclitaxel to Human Tubulin. Pharm Res 29, 3007–3021 (2012). https://doi.org/10.1007/s11095-012-0829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0829-y

KEY WORDS

Navigation