Skip to main content

Advertisement

Log in

A Novel Shell-Structure Cell Microcarrier (SSCM) for Cell Transplantation and Bone Regeneration Medicine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The present study aims to develop a novel open and hollow shell-structure cell microcarrier (SSCM) to improve the anchorage-dependent cell (ADC) loading efficiency, increase the space for cell proliferation and tissue regeneration, and better propel its therapeutic effects.

Methods

Gelatin particles were prepared with oil/water/oil (o/w/o) technique and modified by an adjustable surface crosslinking technique and subsequent release of uncrosslinked material. Optical microscopy and scanning electron microscopy (SEM) were utilized to observe the morphologies of the microcarriers. Cell loading tests were performed to evaluate the biocompatibilities and effect on osteogenesis of SSCM.

Results

SSCMs were successfully fabricated via the surface technique. The shell-structure could allow the cell to attach and grow on both outer and inner surface of sphere and provide adequate space for cell proliferation and extracellular matrix (ECM) secretion. The cell loading rate, proliferation rate and osteogenesis-related gene expressions on the SSCMs were higher than those on the spherical gelatin microcarriers.

Conclusions

The outstanding performance of injectable SSCMs endowed with favorable micro-structure, desirable cytocompatibility and enhanced cell affinity makes them as a good choice as cell delivery vehicle for transplanting therapeutic cells towards the scope of tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Wang C, Gong Y, Zhong Y, Yao Y, Su K, Wang DA. The control of anchorage-dependent cell behavior within a hydrogel/microcarrier system in an osteogenic model. Biomaterials. 2009;30:2259–69.

    Article  PubMed  Google Scholar 

  2. Wang C, Adrianus GN, Sheng N, Toh S, Gong Y, Wang DA. In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials. 2009;30:6986–95.

    Article  PubMed  CAS  Google Scholar 

  3. Hong Y, Gong Y, Gao C, Shen J. Collagen-coated polylactide microcarriers/chitosan hydrogel composite: Injectable scaffold for cartilage regeneration. J Biomed Mater Res A. 2008;85:628–37.

    PubMed  Google Scholar 

  4. Häuselmann HJ, Masuda K, Hunziker EB, Neidhart M, Mok SS, Michel BA, et al. Adult human chondrocytes cultured in alginate form a matrix similar to native human articular cartilage. Am J Physiol Cell Physiol. 1996;271.

  5. Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–51.

    Article  PubMed  CAS  Google Scholar 

  6. Green DW, Leveque I, Walsh D, Howard D, Yang X, Partridge K, et al. Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors. Adv Funct Mater. 2005;15:917–23.

    Article  CAS  Google Scholar 

  7. Tan J, Gemeinhart RA, Ma M, Mark Saltzman W. Improved cell adhesion and proliferation on synthetic phosphonic acid-containing hydrogels. Biomaterials. 2005;26:3663–71.

    Article  PubMed  CAS  Google Scholar 

  8. Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol. 2006;24:299–304.

    Article  PubMed  CAS  Google Scholar 

  9. Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials. 1996;17:879–88.

    Article  PubMed  CAS  Google Scholar 

  10. Malda J, Van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng. 2003;9:939–48.

    Article  PubMed  CAS  Google Scholar 

  11. Declercq HA, Gorski TL, Tielens SP, Schacht EH, Cornelissen MJ. Encapsulation of osteoblast seeded microcarriers into injectable, photopolymerizable three-dimensional scaffolds based on D, L-lactide and ε-caprolactone. Biomacromolecules. 2005;6:1608–14.

    Article  PubMed  CAS  Google Scholar 

  12. Wang C, Gong Y, Lin Y, Shen J, Wang DA. A novel gellan gel-based microcarrier for anchorage-dependent cell delivery. Acta Biomater. 2008;4:1226–34.

    Article  PubMed  CAS  Google Scholar 

  13. Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang DA. An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem. 2009;19:1968–77.

    Article  CAS  Google Scholar 

  14. Van Wezel AL. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture [17]. Nature. 1967;216:64–5.

    Article  PubMed  Google Scholar 

  15. Berry JM, Barnabé N, Coombs KM, Butler M. Production of reovirus type-1 and type-3 from vero cells grown on solid and macroporous microcarriers. Biotechnol Bioeng. 1999;62:12–9.

    Article  PubMed  CAS  Google Scholar 

  16. Bücheler M, Wirz C, Schütz A, Bootz F. Tissue engineering of human salivary gland organoids. Acta Oto Laryngol. 2002;122:541–5.

    Article  Google Scholar 

  17. Harris SA, Enger RJ, Riggs BL, Spelsberg TC. Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res. 1995;10:178–86.

    Article  PubMed  CAS  Google Scholar 

  18. Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Eng. 2005;11:201–13.

    Article  PubMed  CAS  Google Scholar 

  19. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1:581–5.

    Article  PubMed  CAS  Google Scholar 

  20. Shi X, Wang Y, Ren L, Gong Y, Wang DA. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res. 2009;26:422–30.

    Article  PubMed  CAS  Google Scholar 

  21. Mason PW, Lu ML, Jacobson BS. Cell substrate adhesion-induced redistribution of proteins among the apical, basal, and internal domains of the plasma membrane of HeLa cells spreading on gelatin. J Biol Chem. 1987;262:3746–53.

    PubMed  CAS  Google Scholar 

  22. Wang C, Wang DA. An injectable, nanoaggregate-based system for mesenchymal stem cell (MSC) delivery: enhancement of cell adhesion and prevention of cytotoxicity. J Mater Chem. 2010;20:3166–70.

    Article  CAS  Google Scholar 

  23. Wang C, Bai J, Gong Y, Zhang F, Shen J, Wang DA. Enhancing cell affinity of nonadhesive hydrogel substrate: the role of silica hybridization. Biotechnol Prog. 2008;24:1142–6.

    Article  PubMed  CAS  Google Scholar 

  24. Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB, et al. Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology. 2008;47:1775–9.

    Article  PubMed  CAS  Google Scholar 

  25. Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater. 2007;3:1007–18.

    Article  PubMed  CAS  Google Scholar 

  26. Rouahi M, Champion E, Hardouin P, Anselme K. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials. 2006;27:2829–44.

    Article  PubMed  CAS  Google Scholar 

  27. Cer E, Gürpinar ÖA, Onur MA, Tuncel A. Polyethylene glycol-based cationically charged hydrogel beads as a new microcarrier for cell culture. J Biomed Mater Res B Appl Biomater. 2007;80:406–14.

    PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by grant AcRF Tier 1 RG 64/08, Ministry of Education, Singapore and NMRC/EDG/1001/2010, National Medical Research Council, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, K., Gong, Y., Wang, C. et al. A Novel Shell-Structure Cell Microcarrier (SSCM) for Cell Transplantation and Bone Regeneration Medicine. Pharm Res 28, 1431–1441 (2011). https://doi.org/10.1007/s11095-010-0321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0321-5

KEY WORDS

Navigation