Skip to main content

Advertisement

Log in

Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the preparation process of bone morphogenetic protein-2 (BMP-2) containing bovine serum albumin (BSA) nanoparticles (NPs), and to assess the bioactivity of BMP-2 encapsulated in such NPs.

Methods

The NPs were prepared by a coacervation method, and the effects of process parameters on NP size and polydispersity were examined. Polymer coated NPs were characterized with respect to amount of adsorbed polymer, particle size and zeta potential. Using bone marrow stromal cells (BMSC), biocompatibility of the NPs was investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) Assay, and bioactivity of the encapsulated BMP-2 was investigated by alkaline phosphatase (ALP) induction and calcification.

Results

The size of NPs could be controlled in the 50–400 nm range by process parameters including BSA concentration, non-solvent:solvent ratio and pH value. After coating with cationic polymers, the particle size and zeta potential were significantly increased. MTT assay indicated no toxicity of both the uncoated and coated NPs on BMSC. Based on ALP induction and calcification, full retention of BMP-2 bioactivity was retained in the polymer-coated NPs.

Conclusions

This study described a preparation procedure for BSA NPs with controllable particle size, and such polymer-coated BSA NPs are promising delivery agents for local and systemic administration of BMP-2 in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Luginbuehl, L. Meinel, H. P. Merkle, and B. Gander. Localized delivery of growth factors for bone repair. Euro. J. Pharm. Biopharm. 58:197–208 (2004). doi:10.1016/j.ejpb.2004.03.004.

    Article  CAS  Google Scholar 

  2. K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. von Briesen, and D. Schubert. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257:169–180 (2003). doi:10.1016/S0378-5173(03)00134-0.

    Article  PubMed  CAS  Google Scholar 

  3. B. G. Muller, H. Leuenberger, and T. Kissel. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm. Res. 13:32–37 (1996). doi:10.1023/A:1016064930502.

    Article  PubMed  CAS  Google Scholar 

  4. M. Roser, D. Fischer, and T. Kissel. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Euro. J. Pharm. Biopharm. 46:255–263 (1998). doi:10.1016/S0939-6411(98)00038-1.

    Article  CAS  Google Scholar 

  5. S. M. Moghimi, A. C. Hunter, and J. C. Murray. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53:283–318 (2001).

    PubMed  CAS  Google Scholar 

  6. D. C. Litzinger, A. M. J. Buiting, N. van Rooijen, and L. Huang. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta. 1190:99–107 (1994). doi:10.1016/0005-2736(94)90038-8.

    Article  PubMed  CAS  Google Scholar 

  7. T. O. Harasym, M. B. Bally, and P. Tardi. Clearance properties of liposomes involving conjugated proteins for targeting. Adv. Drug Deliv. Rev. 32:99–118 (1998). doi:10.1016/S0169-409X(97)00134-8.

    Article  PubMed  CAS  Google Scholar 

  8. D. V. Devine, and A. J. Bradley. The complement system in liposome clearance: Can complement deposition be inhibited? Adv. Drug Deliv. Rev. 32:19–29 (1998). doi:10.1016/S0169-409X(97)00129-4.

    Article  PubMed  CAS  Google Scholar 

  9. D. Thassu, M. Deleers, and Y. Pathak. Nanoparticulate drug delivery systems. Informa Healthcare, New York, 2007.

    Google Scholar 

  10. C. Plank, K. Mechtler, F. C. Szoka, and E. Wagner. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum. Gene Ther. 7:1437–1446 (1996). doi:10.1089/hum.1996.7.12-1437.

    Article  PubMed  CAS  Google Scholar 

  11. O. P. Rubino, R. Kowalsky, and J. Swarbrick. Albumin microspheres as a drug delivery system: relation among turbidity ratio, degree of cross-linking, and drug release. Pharm. Res. 10:1059–1065 (1993). doi:10.1023/A:1018979126326.

    Article  PubMed  CAS  Google Scholar 

  12. A. B. MacAdam, Z. B. Shafi, S. L. James, C. Marriott, and G. P. Martin. Preparation of hydrophobic and hydrophilic albumin microspheres and determination of surface carboxylic acid and amino residues. Int. J. Pharm. 151:47–55 (1997). doi:10.1016/S0378-5173(97)04886-2.

    Article  CAS  Google Scholar 

  13. C. Weber, C. Coester, J. Kreuter, and K. Langer. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 194:91–102 (2000) Medline. doi:10.1016/S0378-5173(99)00370-1.

    Article  PubMed  CAS  Google Scholar 

  14. W. Lin, A. G. A. Coombes, M. C. Davies, S. S. Davis, and L. Illum. Preparation of sub-100 nm human serum albumin nanoparticles using a pH-coacervation method. J. Drug Target. 1:237–243 (1993). doi:10.3109/10611869308996081.

    Article  PubMed  CAS  Google Scholar 

  15. M. Rahimnejad, M. Jahanshahi, and G. D. Najafpour. Production of biological nanoparticles from bovine serum albumin for drug delivery. Afr. J. Biotechnol. 5:1918–1923 (2006).

    CAS  Google Scholar 

  16. J. P. van Miller, S. J. Hermansky, P. E. Losco, and B. Ballantyne. Chronic toxicity and oncogenicity study with glutaraldehyde dosed in the drinking water of Fischer 344 rats. Toxicology. 175:177–189 (2002). doi:10.1016/S0300-483X(02)00080-X.

    Article  PubMed  Google Scholar 

  17. D. McGregor, H. Bolt, V. Cogliano, and H. B. Richter-Reichhelm. Formaldehyde and glutaraldehyde and nasal cytotoxicity: case study within the context of the 2006 IPCS human framework for the analysis of a cancer mode of action for humans. Crit. Rev. Toxicol. 36:821–835 (2006). doi:10.1080/10408440600977669.

    Article  PubMed  CAS  Google Scholar 

  18. S. Segura, C. Gamazo, J. M. Irache, and S. Espuelas. Gamma interferon loaded onto albumin nanoparticles: in vitro and in vivo activities against brucella abortus. Antimicrob. Agents. Chemother. 51:1310–1314 (2007). doi:10.1128/AAC.00890-06.

    Article  PubMed  CAS  Google Scholar 

  19. S. Segura, S. Espuelas, M. J. Renedo, and J. M. Irache. Potential of albumin nanoparticles as carriers for interferon gamma. Drug Dev. Ind. Pharm. 31:271–280 (2005).

    PubMed  CAS  Google Scholar 

  20. E. Leo, M. Angela Vandelli, R. Cameroni, and F. Forni. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: Involvement of the drug in the cross-linking process. Int. J. Pharm. 155:75–82 (1997). doi:10.1016/S0378-5173(97)00149-X.

    Article  CAS  Google Scholar 

  21. S. Zhang, G. Wang, X. Lin, M. Chatzinikolaidou, H. Jennissen, H. Uludag. Polyethylenimine-coated albumin nanopartices for BMP-2 delivery. Biotechnol Prog. In Press (2008).

  22. M. Varkey, C. Kucharski, T. Haque, W. Sebald, and H. Uludag. In vitro osteogenic response of rat bone marrow cells to bFGF and BMP-2 treatments. Clin. Orthop. Relat. Res. 443:113–123 (2006). doi:10.1097/01.blo.0000200236.84189.87.

    Article  PubMed  Google Scholar 

  23. S. Zhang, J. E. I. Wright, H. Uludag, and N. Ozber. The interaction of cationic polymers and their bisphosphonate derivatives with hydroxyapatite. Macromol. Biosci. 7:656–670 (2007). doi:10.1002/mabi.200600286.

    Article  PubMed  CAS  Google Scholar 

  24. C. Jeney, O. Dobay, A. Lengyel, E. Adam, and I. Nasz. Taguchi optimisation of ELISA procedures. J. Immunol. Methods. 223:137–146 (1999). doi:10.1016/S0022-1759(98)00185-9.

    Article  PubMed  CAS  Google Scholar 

  25. C. C. Hung, and H. C. Shih. Experimental design method applied to microwave plasma enhanced chemical vapor deposition diamond films. J. Crystal Growth. 233:723–729 (2001). doi:10.1016/S0022-0248(01)01607-4.

    Article  CAS  Google Scholar 

  26. H. Jiang, C. Secretan, T. Gao, K. Bagnall, G. Korbutt, J. Lakey, and N. M. Jomha. The development of osteoblasts from stem cells to supplement fusion of the spine during surgery for AIS. Stud. Health Tech. Informat. 123:467–472 (2006).

    CAS  Google Scholar 

  27. J. Kreuter. Nanoparticles and nanocapsules–new dosage forms in the nanometer size range. Pharm. Acta Helv. 53:33–39 (1978).

    PubMed  CAS  Google Scholar 

  28. J. S. Jacob, and E. Mathiowitz. A novel nechanism for spontaneous encapsulation of active agents: phase inversion nanoencapsulation. In S. Svenson (ed.), Carrier-Based Drug Delivery, American Chemical Society, Washington, DC, 2004, pp. 214–223.

    Google Scholar 

  29. T. Merdan, J. Callahan, H. Petersen, K. Kunath, U. Bakowsky, P. Kopeckova, T. Kissel, and J. Kopecek. Pegylated polyethylenimine-Fab’ antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjugate Chem. 14:989–996 (2003). doi:10.1021/bc0340767.

    Article  CAS  Google Scholar 

  30. S. Faraasen, J. Voros, G. Csucs, M. Textor, H. P. Merkle, and E. Walter. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharm. Res. 20:237–246 (2003). doi:10.1023/A:1022366921298.

    Article  PubMed  CAS  Google Scholar 

  31. P. C. Hiemenz, and R. Rajagopalan. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, 1997.

    Google Scholar 

  32. J. B. Oldham, L. Lu, B. D. Porter, T. E. Hefferan, D. R. Larson, B. L. Currier, A. G. Mikos, and M. J. Yaszemski. Biological activity of rhBMP-2 released from PLGA microspheres. J. Biomech. Eng. 122:289–292 (2008). doi:10.1115/1.429662.

    Article  Google Scholar 

  33. S. C. Lee, M. Shea, M. A. Battle, K. Kozitza, E. Ron, T. Turek, R. G. Schaub, and W. C. Hayes. Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix. J. Biomed. Mat. Res. 28:1149–1156 (1994). doi:10.1002/jbm.820281005.

    Article  CAS  Google Scholar 

  34. J. Schrier, B. Fink, J. Rodgers, H. Vasconez, and P. DeLuca. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing. AAPS PharmSciTech. 2:73–80 (2001). doi:10.1208/pt020318.

    Article  Google Scholar 

  35. F. M. Phillips, A. S. Turner, H. B. Seim III, J. MacLeay, C. A. Toth, A. R. Pierce, and D. L. Wheeler. In vivo BMP-7 (OP-1) enhancement of osteoporotic vertebral bodies in an ovine model. Spine J. 6:500–506 (2006). doi:10.1016/j.spinee.2006.01.014.

    Article  PubMed  Google Scholar 

  36. P. Q. Ruhe, O. C. Boerman, F. G. M. Russel, P. H. M. Spauwen, A. G. Mikos, and J. A. Jansen. Controlled release of rhBMP-2 loaded poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. J. Control. Release. 106:162–171 (2005). doi:10.1016/j.jconrel.2005.04.018.

    Article  PubMed  CAS  Google Scholar 

  37. O. Jeon, S. J. Song, H. S. Yang, S. H. Bhang, S. W. Kang, M. A. Sung, J. H. Lee, and B. S. Kim. Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem. Biophys. Res. Commun. 369:774–780 (2008). doi:10.1016/j.bbrc.2008.02.099.

    Article  PubMed  CAS  Google Scholar 

  38. G. Wei, Q. Jin, W. V. Giannobile, and P. X. Ma. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 28:2087–2096 (2007). doi:10.1016/j.biomaterials.2006.12.028.

    Article  PubMed  CAS  Google Scholar 

  39. Y. J. Wang, F. H. Lin, J. S. Sun, Y. C. Huang, S. C. Chueh, and F. Y. Hsu. Collagen-hydroxyapatite microspheres as carriers for bone morphogenic protein-4. Artif.Organs. 27:162–168 (2003). doi:10.1046/j.1525-1594.2003.06953.x.

    Article  PubMed  CAS  Google Scholar 

  40. F. Chen, Y. Zhao, R. Zhang, T. Jin, H. Sun, Z. Wu, and Y. Jin. Periodontal regeneration using novel glycidyl methacrylated dextran (Dex-GMA)/gelatin scaffolds containing microspheres loaded with bone morphogenetic proteins. J. Control. Release. 121:81–90 (2007). doi:10.1016/j.jconrel.2007.05.023.

    Article  PubMed  CAS  Google Scholar 

  41. F. Chen, Z. Wu, Q. Wang, H. Wu, Y. Zhang, X. Nie, and Y. Jin. Preparation of recombinant human bone morphogenetic protein-2 loaded dextran-based microspheres and their characteristics1. Acta Pharmacol. Sin. 26:1093–1103 (2005). doi:10.1111/j.1745-7254.2005.00180.x.

    Article  PubMed  CAS  Google Scholar 

  42. F. Chen, Z. Wu, H. Sun, H. Wu, S. Xin, Q. Wang, G. Dong, Z. Ma, S. Huang, Y. Zhang, and Y. Jin. Release of bioactive BMP from dextran-derived microspheres: A novel delivery concept. Int. J. Pharm. 307:23–32 (2006). doi:10.1016/j.ijpharm.2005.09.024.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Xiaoyue Lin and Cezary Kucharski (Faculty of Engineering, University of Alberta) for technical help with cell culture studies. This project was financially supported by an operating grant from the Canadian Institutes of Health Research (CIHR). Guilin Wang is financially supported by a scholarship from the China Scholarship Council. Kevin Siggers is financially supported by a graduate studentship from the Natural Sciences and Engineering Research Council of Canada and a CIHR Team Grant (PI: Derrick Rancourt). BMP-2 was kindly provided by Dr. Walter Sehald (University of Würzburg, Germany)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludağ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Siggers, K., Zhang, S. et al. Preparation of BMP-2 Containing Bovine Serum Albumin (BSA) Nanoparticles Stabilized by Polymer Coating. Pharm Res 25, 2896–2909 (2008). https://doi.org/10.1007/s11095-008-9692-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9692-2

KEY WORDS

Navigation