Skip to main content

Advertisement

Log in

Development of Stealth Liposome Formulation of 2′-Deoxyinosine as 5-Fluorouracil Modulator: In Vitro and In Vivo Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The aims of this study were to develop a stealth, pegylated liposomal formulation of 2′-deoxyinosine (d-Ino), a 5-fluorouracil (5-FU) modulator, to evaluate its efficacy in vitro and in tumor-bearing mice, and to study its pharmacokinetics in rats.

Method

After designing a pegylated liposome encapsulating d-Ino (L-d-Ino), we evaluated its efficacy as 5-FU modulator in vitro. Antiproliferative assays, thymidylate synthase (TS) inhibition, and apoptosis studies were carried out to check whether an optimization of 5-FU action was achieved on the 5-FU-resistant SW620 cell line. Animal pharmacokinetic and ex vivo studies were next performed to confirm that L-d-Ino displayed a slower plasma elimination pattern than free d-Ino. Finally, effects on tumor growth of L-d-Ino + 5-FU combination was evaluated in xenografted mice.

Results

We developed a stable, sterile, and homogenous 100-nm population of pegylated liposomes encapsulating 30% of d-Ino. Liposomal d-Ino exhibited a strong potential as 5-FU modulator in vitro by enhancing TS inhibition and subsequent apoptosis induction, while displaying a better pharmacokinetic profile in animals, with a near seven times clearance reduction as compared with the free form. When used in tumor-bearing mice in combination with 5-FU, our results showed next that the association led to 70% of tumor reduction with a doubling median survival time as compared with untreated animals, whereas 5-FU alone was ineffective.

Conclusion

Our data show that liposomal d-Ino, through an optimized pharmacokinetic profile, displays apotenteffect as fluoropyrimidines modulator, both in vitro and in xenografted mice. Besides, we showed here that itispossible to reverse a resistant phenotype to 5-FU, a major drug extensively described in clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. M. Cohen B. D. Minsky R. L. Schilsky (1993) Colon cancer. In V.T. Devita S. Hellman S. A. Rosenberg (Eds) Cancer, Principles and Practises of Oncology EditionNumber4th edn. JB Lippincott Philadelphia 929–977

    Google Scholar 

  2. A. M. Gotto M. L. Belkhode O. Touster (1969) ArticleTitleStimulatory effects of inosine and deoxyinosine on the incorporation of uracil-2-14-C, and 5-bromouracil-2-14-C into nucleic acids by Ehrlich ascites tumor cells in vitro Cancer Res. 29 IssueID4 807–811 Occurrence Handle5775710 Occurrence Handle1:CAS:528:DyaF1MXpsV2jsw%3D%3D

    PubMed  CAS  Google Scholar 

  3. R. M. Evans J. D. Laskin M. T. Hakala (1981) ArticleTitleEffect of excess folates and deoxyinosine on the activity and site of action of 5-fluorouracil Cancer Res. 41 3288–3295 Occurrence Handle6973389 Occurrence Handle1:CAS:528:DyaL3MXlvVSks74%3D

    PubMed  CAS  Google Scholar 

  4. M. Inaba J. Mistsuhashi H. Sawada N. Miike et al. (1996) ArticleTitleReduced activity of anabolizing enzymes in 5-fluorouracil-resistant human stomach cancer cells Jpn. Cancer Res. 87 IssueID2 212–220 Occurrence Handle1:CAS:528:DyaK28XhsFCntLw%3D

    CAS  Google Scholar 

  5. J. Ciccolini L. Peillard C. Aubert P. Formento et al. (2000) ArticleTitleMonitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study Fundam. Clin. Pharmacol. 14 IssueID2 147–154 Occurrence Handle10796062 Occurrence Handle1:CAS:528:DC%2BD3cXis12qtr8%3D

    PubMed  CAS  Google Scholar 

  6. J. L. Perignon D. M. Bories A. M. Houllier L. Thuillier et al. (1987) ArticleTitleMetabolism of pyrimidine bases and nucleotides by pyrimidine-nucleoside phosphorylases in cultured human lymphoid cells Biochim. Biophys. Acta 928 130–136 Occurrence Handle3567226 Occurrence Handle1:CAS:528:DyaL2sXhvFenurk%3D Occurrence Handle10.1016/0167-4889(87)90113-3

    Article  PubMed  CAS  Google Scholar 

  7. D. Singhal N. F. Ho B. D. Anderson (1998) ArticleTitleAbsorption and intestinal metabolism of purine dideoxynucleosides and an adenosine deaminase-activated prodrug of 2′,3′-dideoxyinosine in the mesenteric vein cannulated rat ileum J. Pharm. Sci. 87 IssueID5 569–577 Occurrence Handle9572907 Occurrence Handle1:CAS:528:DyaK1cXivVeltrg%3D Occurrence Handle10.1021/js9703582

    Article  PubMed  CAS  Google Scholar 

  8. S. Kewn P. G. Hoggard J. S. Henry-Mowatt G. J. Veal et al. (1999) ArticleTitleIntracellular activation of 2′,3′-dideoxyinosine and drug interactions in vitro AIDS Res. Hum. Retrovir. 15 IssueID9 793–802 Occurrence Handle10381167 Occurrence Handle1:CAS:528:DyaK1MXktFCqsbc%3D Occurrence Handle10.1089/088922299310692

    Article  PubMed  CAS  Google Scholar 

  9. F. J. Lionetti N. L. Fortier (1966) ArticleTitleMetabolism of deoxyinosine by human erythrocyte ghosts Biochim. Biophys. Acta 119 462–469 Occurrence Handle5963023 Occurrence Handle1:CAS:528:DyaF28Xktlaitbg%3D

    PubMed  CAS  Google Scholar 

  10. J. Ciccolini L. Peillard A. Evrard P. Cuq C. Aubert et al. (2000) ArticleTitleEnhanced antitumor activity of 5-fluorouracil in combination with 2′-deoxyinosine in human colorectal cell lines and human colon tumor xenografts Clin. Cancer Res. 6 IssueID4 1529–1535 Occurrence Handle10778986 Occurrence Handle1:CAS:528:DC%2BD3cXjtVOqtbs%3D

    PubMed  CAS  Google Scholar 

  11. J. Ciccolini P. Cuq A. Evrad S. Giacometti A. Pelegrin C. Aubert J. P. Cano A. Iliadis (2001) ArticleTitleCombination of thymidine phosphorylase gene transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor activity in vitro and in vivo Mol. Cancer Ther. 1 IssueID2 133–139 Occurrence Handle12467230 Occurrence Handle1:CAS:528:DC%2BD38XlsFSmtbc%3D

    PubMed  CAS  Google Scholar 

  12. T. Lian R. Ho (2000) ArticleTitleTrends and developments in liposome drug delivery systems J. Pharm. Sci. 90 667–680 Occurrence Handle10.1002/jps.1023

    Article  Google Scholar 

  13. A. D. Bangham M. M. Standish J. C. Watkins (1965) ArticleTitleDiffusion of univalent ions across the lamellae of swollen phospholipids J. Mol. Biol. 13 238–252 Occurrence Handle5859039 Occurrence Handle1:CAS:528:DyaF2MXkvVWru7g%3D

    PubMed  CAS  Google Scholar 

  14. D. Roberts (1966) ArticleTitleAn isotopic assay for dihydrofolate reductase Biochemistry 5 IssueID11 3549–3551 Occurrence Handle4382039 Occurrence Handle1:CAS:528:DyaF2sXhs1w%3D Occurrence Handle10.1021/bi00875a023

    Article  PubMed  CAS  Google Scholar 

  15. P. Workman A. Balmain J. A. Hickman et al. (1988) ArticleTitleUKCCR guidelines for welfare of animals in experimental neoplasia Lab Anim. 22 IssueID3 195–201 Occurrence Handle3172698 Occurrence Handle1:STN:280:BiaD3M3osFI%3D Occurrence Handle10.1258/002367788780746467

    Article  PubMed  CAS  Google Scholar 

  16. A. Iliadis A. C. Brown M. L. Huggins (1992) ArticleTitleAPIS: a software for model identification, simulation and dosage regimen calculations in clinical and experimental pharmacokinetics Comput. Methods Programs Biomed. 38 IssueID4 227–239 Occurrence Handle1473342 Occurrence Handle10.1016/0169-2607(92)90103-E Occurrence Handle1:STN:280:ByyC3Mzpsl0%3D

    Article  PubMed  CAS  Google Scholar 

  17. C. E. Myers R. C. Young B. A. Chabner (1975) ArticleTitleBiochemical determinants of 5-fluorouracil response in vivo. The role of deoxyuridylate pool expansion J. Clin. Invest. 56 IssueID5 1231–1238 Occurrence Handle1184747 Occurrence Handle1:CAS:528:DyaE28Xht1GrsA%3D%3D Occurrence Handle10.1172/JCI108199

    Article  PubMed  CAS  Google Scholar 

  18. C. E. Myers R. Diasio H. M. Eliot B. A. Chabner (1976) ArticleTitlePharmacokinetics of the fluoropyrimidines: implications for their clinical use Cancer Treat. Rev. 3 IssueID3 175–183 Occurrence Handle963687 Occurrence Handle1:STN:280:CSiD3c7kvFU%3D Occurrence Handle10.1016/S0305-7372(76)80021-7

    Article  PubMed  CAS  Google Scholar 

  19. Y. M. Rustum (1999) ArticleTitleClinical implications of 5-FU modulation Oncology (Huntingt.) 13 IssueID7 Suppl 3 22–25 Occurrence Handle1:STN:280:DyaK1MzntV2nsA%3D%3D

    CAS  Google Scholar 

  20. G. J. Peters E. Laurensse J. Lankelma A. Leyva et al. (1984) ArticleTitleSeparation of several 5-fluorouracil metabolites in various melanoma cell lines. Evidence for the synthesis of 5-fluorouracil-nucleotide sugars Eur. J. Cancer Clin. Oncol. 20 IssueID11 1425–1431 Occurrence Handle6542012 Occurrence Handle10.1016/0277-5379(84)90063-4 Occurrence Handle1:CAS:528:DyaL2MXlsFKjtQ%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. G. J. Peters E. Laurensse A. Leyva J. Lankelma et al. (1986) ArticleTitleSensitivity of human, murine, and rat cells to 5-fluorouracil and 5′-deoxy-5-fluorouridine in relation to drug-metabolizing enzymes Cancer Res. 46 IssueID1 20–28 Occurrence Handle2415245 Occurrence Handle1:CAS:528:DyaL28XmtFKgtg%3D%3D

    PubMed  CAS  Google Scholar 

  22. E. L. Schwartz N. Baptiste C. J. O'Connor S. Wadler et al. (1994) ArticleTitlePotentiation of the antitumor activity of 5-fluorouracil in colon carcinoma cells by the combination of interferon and deoxyribonucleosides results from complementary effects on thymidine phosphorylase Cancer Res. 54 IssueID6 1472–1478 Occurrence Handle8137250 Occurrence Handle1:CAS:528:DyaK2cXitlGntrg%3D

    PubMed  CAS  Google Scholar 

  23. E. L. Schwartz N. Baptiste S. Wadler D. Makower (1995) ArticleTitleThymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil J. Biol. Chem. 270 IssueID32 19073–19077 Occurrence Handle7642571 Occurrence Handle1:CAS:528:DyaK2MXnsVOisrg%3D Occurrence Handle10.1074/jbc.270.32.19073

    Article  PubMed  CAS  Google Scholar 

  24. J. Damen J. Regts G. Scherphof (1981) ArticleTitleTransfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition Biochim. Biophys. Acta 665 538–545 Occurrence Handle7295749 Occurrence Handle1:CAS:528:DyaL3MXls1Cjsbk%3D

    PubMed  CAS  Google Scholar 

  25. O. Ishida K. Maruyama K. Sasaki M. Iwatsuru (1999) ArticleTitleSize-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice Int. J. Pharm. 190 49–56 Occurrence Handle10528096 Occurrence Handle10.1016/S0378-5173(99)00256-2 Occurrence Handle1:CAS:528:DyaK1MXmvVart70%3D

    Article  PubMed  CAS  Google Scholar 

  26. K. J. Harrington K. N. Syrigos R. G. Vile (2002) ArticleTitleLiposomally targeted cytotoxic drugs for the treatment of cancer J. Pharm. Pharmacol. 54 1573–1600 Occurrence Handle12542887 Occurrence Handle10.1211/0022357002243 Occurrence Handle1:CAS:528:DC%2BD3sXkvVWgug%3D%3D

    Article  PubMed  CAS  Google Scholar 

  27. T. M. Allen L. G. Cleland (1980) ArticleTitleSerum-induced leakage of liposome contents Biochim. Biophys. Acta 597 418–426 Occurrence Handle7370258 Occurrence Handle1:CAS:528:DyaL3cXhvFeit7k%3D Occurrence Handle10.1016/0005-2736(80)90118-2

    Article  PubMed  CAS  Google Scholar 

  28. K. Maruyama T. Yuda A. Okamoto S. Kojima A. Suginaka M. Iwatsuru (1992) ArticleTitleProlonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol) Biochim. Biophys. Acta 1128 44–49 Occurrence Handle1390877 Occurrence Handle1:CAS:528:DyaK3sXislentg%3D%3D

    PubMed  CAS  Google Scholar 

  29. T. M. Allen C. Hansen F. Martin C. Redemann A. Yau-Young (1991) ArticleTitleLiposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo Biochim. Biophys. Acta 1066 29–36 Occurrence Handle2065067 Occurrence Handle1:CAS:528:DyaK3MXkslyrsr8%3D Occurrence Handle10.1016/0005-2736(91)90246-5

    Article  PubMed  CAS  Google Scholar 

  30. R. L. Hong C. J. Huang Y. L. Tseng V. F. Pang S. T. Chen J. J. Liu F. H. Chang (1999) ArticleTitleDirect comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: is surface coating with polyethylene glycol beneficial? Clin. Cancer Res. 5 IssueID11 3645–3652 Occurrence Handle10589782 Occurrence Handle1:CAS:528:DyaK1MXotV2gt74%3D

    PubMed  CAS  Google Scholar 

  31. A. Gabizon H. Shmeeda A. T. Horowitz S. Zalipsky (2004) ArticleTitleTumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates Adv. Drug Deliv. Rev. 56 1177–1192 Occurrence Handle15094214 Occurrence Handle10.1016/j.addr.2004.01.011 Occurrence Handle1:CAS:528:DC%2BD2cXjtF2rtLs%3D

    Article  PubMed  CAS  Google Scholar 

  32. J. Ciccolini L. Peillard C. Aubert P. Formento et al. (2000) ArticleTitleMonitoring of the intracellular activation of 5-fluorouracil to deoxyribonucleotides in HT29 human colon cell line: application to modulation of metabolism and cytotoxicity study Fundam. Clin. Pharmacol. 14 IssueID2 147–154 Occurrence Handle10796062 Occurrence Handle1:CAS:528:DC%2BD3cXis12qtr8%3D

    PubMed  CAS  Google Scholar 

  33. C. E. Canman H. Y. Tang D. P. Normolle T. S. Lawrence et al. (1992) ArticleTitleVariations in patterns of DNA damage induced in human colorectal tumor cells by 5-fluorodeoxyuridine: implications for mechanisms of resistance and cytotoxicity Proc. Natl. Acad. Sci. USA. 89 IssueID21 10474–10478 Occurrence Handle1438236 Occurrence Handle1:CAS:528:DyaK3sXhsF2ktA%3D%3D Occurrence Handle10.1073/pnas.89.21.10474

    Article  PubMed  CAS  Google Scholar 

  34. Y. Sadzuka S. Hirota T. Sonobe (2000) ArticleTitleIntraperitoneal administration of doxorubicin encapsulating liposomes against peritoneal dissemination Toxicol. Lett. 116 51–59 Occurrence Handle10906422 Occurrence Handle10.1016/S0378-4274(00)00201-0 Occurrence Handle1:CAS:528:DC%2BD3cXkvVyqtrk%3D

    Article  PubMed  CAS  Google Scholar 

  35. S. G. Antimisiaris P. Klepetsanis V. Zachariou E. Giannopoulou P. V. Ioannou (2004) ArticleTitle In vivo distribution of arsenic after i.p. injection of arsonoliposomes in balb-c mice Int. J. Pharm. 289 151–158 Occurrence Handle15652207 Occurrence Handle10.1016/j.ijpharm.2004.11.002

    Article  PubMed  Google Scholar 

  36. Y. Sadzuka S. Nakai A. Miyagishima Y. Nozawa S. Hirota (1997) ArticleTitleEffects of administered route on tissue distribution and antitumor activity of polyethyleneglycol-coated liposomes containing adriamycin Cancer Lett. 111 77–86 Occurrence Handle9022131 Occurrence Handle10.1016/S0304-3835(96)04513-2 Occurrence Handle1:CAS:528:DyaK2sXktlyisw%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Ciccolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanciullino, R., Giacometti, S., Aubert, C. et al. Development of Stealth Liposome Formulation of 2′-Deoxyinosine as 5-Fluorouracil Modulator: In Vitro and In Vivo Study. Pharm Res 22, 2051–2057 (2005). https://doi.org/10.1007/s11095-005-8355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-8355-9

Key Words

Navigation