Skip to main content
Log in

Mechanistic Insight into the Antibacterial Activity of Isothiocyanates via Cell Membrane Permeability Alteration

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In addition to recently established potential anticancer activity of isothiocyanates (ITCs) against ovarian cancer, a series of these compounds were found to express antibacterial efficacy toward Escherichia coli and Staphylococcus aureus. The isothiocyanates investigated exhibited significant activity with varying minimum inhibitory concentrations, being effective within 90 min against E. coli and 120 min against S. aureus. Moreover, higher pH levels led to an increase in the antibacterial activity of ITCs. The impact of ITCs on the cell wall structure was studied and cell membrane permeability differences were observed with higher crystal violet dye retention capacity in E. coli, indicating disparities in the cell wall composition between the two bacterial strains. The Fourier transform infrared spectroscopy data supported the disruptive effect of ITCs. Observance of the discharge of ultraviolet-absorbing intracellular materials and scanning electron microscopy investigations confirmed that cellular degradation and disruption occurred in both bacterial strains. These studies indicated that the ITCs under study exhibited effective antibacterial activity through alteration of the cell membrane permeability resulting in the cell damage of both bacterial strains, with higher activity observed against E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. B. Spellberg and Y. Doi, J. Infect. Dis., 212, 1853 – 1855 (2015).

    Article  Google Scholar 

  2. E. Y. Garoy, Y. B. Gebreab, O. O. Achila, et al., Can. J. Dis. Med., 2019, 8321834 (2019).

    Google Scholar 

  3. M. Baym, L. K. Stone, and R. Kishony, Science, 351(6268), aad3292 (2016).

    Article  Google Scholar 

  4. K. Mazumdar, K. A. Kumar, and N. K. Dutta, Int. J. Antimicrob. Agents, 36, 295 – 302 (2010).

    Article  CAS  Google Scholar 

  5. V. W. C. Soo, B. W. Kwan, H. Quezada, et al., Curr. Top. Med. Chem., 17, 1157 – 1176 (2017).

    Article  CAS  Google Scholar 

  6. K. K. Brown and M. B. Hampton, Biochim. Biophys. Acta, 1810, 888 – 894 (2011).

    Article  CAS  Google Scholar 

  7. L. Romeo, R. Iori, P. Rollin, et al., Molecules, 23, 1 – 18 (2018).

    Google Scholar 

  8. V. I. Boev, T. N. Maslenkova, E. I. Pil’ko, et al., Pharm. Chem. J., 24, 818 – 822 (1990).

  9. B. D. Grishchuk, L. I. Vlasyk, A. V. Blinder, et al., Pharm. Chem. J., 30, 630 – 632 (1996).

    Article  Google Scholar 

  10. N. Kurepina, B. N. Kreiswirth, and A. Mustaev, J. Appl. Microbiol., 115, 943 – 954 (2013).

    Article  CAS  Google Scholar 

  11. V. Dufour, M. Stahl, and C. Baysse, Microbiology, 161, 229 – 243 (2015).

    Article  CAS  Google Scholar 

  12. S. J. Kaiser, N. T. Mutters, B. Blessing, et al., Fitoterapia, 119, 57 – 63 (2017).

    Article  CAS  Google Scholar 

  13. M. Hartmann, M. Berditsch, J. Hawecker, et al., Antimicrob. Agents Chemother., 54, 3132 – 3142 (2010).

    Article  CAS  Google Scholar 

  14. R. M. Epand, C. Walker, R. F. Epand, et al., Biochim. Biophys. Acta, 1858, 980 – 987 (2016).

    Article  CAS  Google Scholar 

  15. C. Dias and A. P. Rauter, Future Med. Chem., 11, 211 – 228 (2019).

  16. C. F. Carson, B. J. Mee, and T. V. Riley, Antimicrob. Agents Chemother., 46, 1914 – 1920 (2002).

    Article  CAS  Google Scholar 

  17. K. Richa, R. Karmaker, N. Longkumer, et al., Anticancer Agents Med. Chem., 19, 2211 – 2222 (2019).

    Article  CAS  Google Scholar 

  18. B. M. Vinoda, Y. D. Bodke, M. Vinuth, et al., Organic Chem. Curr. Res., 5(1), (2016).

    Google Scholar 

  19. D. M. Culafic, B. V. Gacic, J. K. Vukcevic, et al., Arch. Biol. Sci., 57, 173 – 178 (2005).

    Article  Google Scholar 

  20. G. Wu, J. Ding, H. Li, et al., Curr. Microbiol., 57, 552 – 557 (2008).

    Article  CAS  Google Scholar 

  21. K. P. Devi, S. A. Nisha, R. Sakthivel, et al., J. Ethanopharmacol., 130, 107 – 115 (2010).

    Article  CAS  Google Scholar 

  22. K. Zhou, W. Zhou, P. Li, et al., Food Control, 19, 817 – 822 (2008).

    Article  CAS  Google Scholar 

  23. H. M. Al-Qadiri, N. I. Al-Alami, M. A. Al-Holy, et al., J. Agric. Food. Chem., 19, 8992 – 8997 (2008).

    Article  Google Scholar 

  24. P. Bharali, J. P. Saikia, A. Ray, et al., Colloids Surf. B., 103, 502 – 509 (2013).

    Article  CAS  Google Scholar 

  25. A. Ray, P. Bharali, and B. K. Konwar, Appl. Biochem. Biotechnol., 171, 2003 – 2019 (2019).

    Article  Google Scholar 

  26. C. Dias, A. Aires, and M. J. Saavedra, Int. J. Mol. Sci., 15, 19552 – 19561 (2014).

    Article  CAS  Google Scholar 

  27. C. Weigand, M. Abel, P. Ruth, et al., Skin Pharmacol. Physiol., 28, 147 – 158 (2015).

    Article  Google Scholar 

  28. E. M. Jones, C. A. Cochrane, and S. L. Percival, Adv. Wound Care, 4, 431 – 439 (2015).

    Article  Google Scholar 

  29. L. Alexander, S. Andreas, S. Grabbe, et al., Arch. Dermatol. Res., 298(9), 413 – 20 (2007).

    Article  Google Scholar 

  30. M. Feoktisova, P. Geserick, and M. Leverkus, Cold Spring Harb. Protoc., 343 – 346 (2016).

  31. O. S. Aslanturk, Genotoxicity: A Predictable Risk to Our Actual World, in: M. L. Larramendy and S. Soloneski (Eds), IntechOpen (2017).

  32. N. Anand and B. Davis, Nature, 185, 22 – 23 (1960).

    Article  CAS  Google Scholar 

  33. N. Anand, B. Davis., and A. Armitage, Nature, 185, 23 – 24 (1960).

    Article  CAS  Google Scholar 

  34. H. J. Busse, C.Wostmann, and E. P. Bakker, J. Gen. Microbiol., 138, 551 – 561(1992).

    Article  CAS  Google Scholar 

  35. F. V. Bambeke, M. P. Mingeot-Leclercq, A. Schanck, et al., Eur. J. Pharmacol., 247, 155 – 168 (1993).

    Article  Google Scholar 

  36. N. Li, M. Luo, Y. Fu, et al., Phytother Res., 27, 1517–1523 (2013).

    Article  CAS  Google Scholar 

  37. M. A. Al-holy, M. Lin, A. G. Cavinato, et al., Food Microbiol., 23, 162 – 168(2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are particularly grateful to Professor C. R. Deb, Biotech Hub, Department of Botany, Nagaland University, Lumami for extending the usage of his laboratory facilities.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

The author Temsurenla is thankful for the University Grants Commission–Basic Science Research Fellowship (No. NU/PF/F-17/2013), and Aola Supong is thankful for the DST-INSPIRE Fellowship (No. DST/INSPIRE Fellowship/IF160718) to the Department of Science and Technology, India. The authors also acknowledge the financial assistance through DBT Project No. BT/PR28873/NER/95/1527/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upasana Bora Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richa, K., Temsurenla, Supong, A. et al. Mechanistic Insight into the Antibacterial Activity of Isothiocyanates via Cell Membrane Permeability Alteration. Pharm Chem J 56, 300–308 (2022). https://doi.org/10.1007/s11094-022-02634-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02634-x

Keywords

Navigation