Skip to main content
Log in

Novel Free-Radical Scavengers Based on Ferrofluid/Polyaniline Nanocomposites

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

We investigated the antioxidant activity of novel ferrofluid/polyaniline nanocomposites with various mass ratios synthesized via in situ chemical oxidative polymerization of aniline without stirring in the presence of stabilized Fe3O4 nanoparticles and citric acid as a surfactant. The structural, morphological, thermal, magnetic, and electrical properties of the nanocomposites were characterized by IR and UV spectroscopy, XRD, SEM, TEM, TGA, VSM, and four-point-probe methods. The antioxidant potency was determined by modified 2,2-diphenyl-1-picrylhydrazyl (DPPH) method using an in vitro system. The DPPH free-radical scavenging tests of nanocomposites showed that their antioxidant properties depended on the amount of polyaniline in the composition. Results of the comparison of DPPH scavenging capacity of nanofiber polyaniline and granular ferrofluid/polyaniline nanocomposite show that the antioxidant activity is related to the morphology of polyaniline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.

Similar content being viewed by others

References

  1. A. K. Tiwari, Curr. Sci., 86, 1092 – 1102 (2004).

    CAS  Google Scholar 

  2. V. Sivanandham, Pharmacologyonline, 1, 1062 – 1077 (2011).

    Google Scholar 

  3. L. A. Pham-Huy, H. He, and Ch. Pham-Huy, Int. J. Biomed. Sci., 4, 89 – 96 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Tash, M. Can, and S. Sonmezoglu, Turk. J. Chem., 39, 589 – 599 (2015).

    Article  Google Scholar 

  5. X. Yan, J. Chen, J. Yang, et al., ACS. Appl. Mater. Inter., 2, 2521 – 2529 (2010).

    Article  CAS  Google Scholar 

  6. P. Humpolicek, V. Kasparkova, P. Saha, et al., Synth. Met., 162, 722 – 727 (2012).

    Article  CAS  Google Scholar 

  7. C. V. C. Bouten, P. Y. W. Dankers, A. Driessen-Mol, et al., Adv. Drug Deliv. Rev., 63, 221 – 241 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Ch. W. Hsiao, M. Y. Bai, Y. Chang, et al., Biomaterials, 34, 1063 – 1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. J. Jin, T. Iyoda, C. Cao, et al., Angew. Chem. Int. Ed. Engl., 40, 2135 – 2138 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Zh. A. Boeva and V. G. Sergeyev, Polym. Sci. Ser. C, 56, 144 – 153 (2014).

    Article  CAS  Google Scholar 

  11. Y. Bardavid, I. Goykhman, D. Nozaki, et al., J. Phys. Chem. C, 115, 3123 – 3128 (2011).

    Article  CAS  Google Scholar 

  12. M. T. Zarini, C. A. Evangelyn, and L. G. Daniel, Biosens. Bioelectron., 20, 1690 – 1695 (2005).

    Article  Google Scholar 

  13. L. Zhong, S. Xiao, J. Hu, et al., Corros. Sci., 48, 3960 – 3968 (2006).

    Article  CAS  Google Scholar 

  14. J. P. Saikia, S. Banerjee, B. K. Konwar, et al., Colloids Surf. B, 81, 158 – 164 (2010).

    Article  CAS  Google Scholar 

  15. M. R. Gizdavic-Nikolaidis, D. R. Stanisavljev, A. J. Easteal, et al., J. Phys. Chem. C, 114, 18790 – 18796 (2010).

    Article  CAS  Google Scholar 

  16. S. Banerjee, J. P. Saikia, A. Kumar, et al., Nanotechnology, 21, 045101 (2010).

    Article  PubMed  Google Scholar 

  17. Ch. F. Hsu, L. Zhang, H. Peng, et al., Synth. Met., 158, 946 – 952 (2008).

    Article  CAS  Google Scholar 

  18. Z. D. Zujovic, M. R. Gizdavic-Nikolaidis, P. A. Kilmartin, et al., Polymer, 47, 1166 – 1171 (2006).

    Article  CAS  Google Scholar 

  19. J. Alam, U. Riaz, and S. Ahmad, J. Magn. Magn. Mater., 314, 93 – 99 (2007).

    Article  CAS  Google Scholar 

  20. A. Demir, A. Baykal, and H. Sozeri, Turk. J. Chem., 38, 825 – 836 (2014).

    Article  CAS  Google Scholar 

  21. D. Chicot, J. Mendoza, A. Zaoui, et al., Mater. Chem. Phys., 129, 862 – 870 (2011).

    Article  CAS  Google Scholar 

  22. C. I. Covaliu, C. Matei, S. Litescu, et al., Mater. Plast., 47, 5 – 10 (2010).

    CAS  Google Scholar 

  23. C. Scherer and A. M. Figueiredo Neto, Braz. J. Phys., 35, 718 – 727 (2005).

    Article  CAS  Google Scholar 

  24. H. Rostamzad, B. Shabanpour, M. Kashaninejad, et al., Iran. J. Fish. Sci., 92, 279 – 292 (2010).

    Google Scholar 

  25. A. Goodarzi, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Mater. Res. Soc. Symp. Proc., 789 (N6.6), 1 – 6 (2004).

    Google Scholar 

  26. E. Nazarzadeh Zare, M. M. Lakouraj, and M. Baghayeri, Int. J. Polym. Mater. Polym. Biomater., 64, 175 – 183 (2014).

    Article  Google Scholar 

  27. M. M. Lakouraj, E. Nazarzadeh Zare, and P. Najafi Moghadam, Adv. Polym. Tech., 33, 21385(1 – 7) (2014).

    Google Scholar 

  28. S. Ebrahimiasl, A. Zakaria, A. Kassim, et al., Int. J. Nanomedicine, 10, 217 – 227 (2015).

    CAS  PubMed  Google Scholar 

  29. L. Chunjiang, W. Jianhong, L. Zhengyou, et al., J Wuhan Univ. Technol., 25, 760 – 764 (2010).

    Article  Google Scholar 

  30. J. R. Soare, T. C. P. Dinis, A. P. Cunha, et al., Free Radic. Res., 26, 469 – 478 (1997).

    Article  Google Scholar 

  31. D. Sazou, Synth. Met., 118, 133 – 147 (2001).

    Article  CAS  Google Scholar 

  32. K. Sunderland, P. Brunetti, L. Spinu, et al., Mater. Lett., 58, 3136 – 3140 (2004).

    Article  CAS  Google Scholar 

  33. O. Jarjayes, P. H. Fries, and G. Bidan, Synth. Met., 69, 343 – 344 (1995).

    Article  CAS  Google Scholar 

  34. F. Yan, G. Xue, J. Chen, et al., Synth. Met., 123, 17 – 20 (2001).

    Article  CAS  Google Scholar 

  35. H. Kawaguchi, Prog. Polym. Sci., 25, 1171 – 1210 (2000).

    Article  CAS  Google Scholar 

  36. P. Gomez-Romero, Adv. Mater., 13, 163 – 174 (2001).

    Article  CAS  Google Scholar 

  37. R. H. Marchessault, P. Rioux, and L. Raymond, Polymer, 33, 4024 – 4028 (1992).

    Article  CAS  Google Scholar 

  38. A. G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 – 2590 (2001).

    Article  CAS  Google Scholar 

  39. S. Quillard, G. Louarn, S. Lefrant, et al., Phys. Rev. B, 50, 12496 – 12508 (1994).

    Article  CAS  Google Scholar 

  40. M. Trchova, J. Stejskal, and J. Prokes, Synth. Met., 101, 840 – 841 (1999).

    Article  CAS  Google Scholar 

  41. A. Sharafi and M. Seyedsadjadi, Int. J. Bio-Inorg. Hybr. Nanomater., 2, 437 – 441 (2013).

    Google Scholar 

  42. S. Kumar and S. Jain, J. Chem., 2014, 1 – 6 (2014).

    Google Scholar 

  43. J. Deng, X. Ding, W. Zhang, et al., Polymer, 43, 2179 – 2184 (2002).

    Article  CAS  Google Scholar 

  44. S. S. Umare, B. H. Shambharkar, and R. S. Ningthoujam, Synth. Met., 160, 1815 – 1821 (2010).

    Article  CAS  Google Scholar 

  45. Z. Zhang and M. Wan, Synth. Met., 132, 205 – 212 (2003).

    Article  CAS  Google Scholar 

  46. C. Yu, J. Zhai, Z. Li, et al., Thin Solid Films, 516, 5107 – 5110 (2008).

    Article  CAS  Google Scholar 

  47. J. Deng, C. L. He, Y. Peng, et al., Synth. Met., 139, 295 – 301 (2003).

    Article  CAS  Google Scholar 

  48. R. Kitture, S. Ghosh, P. Kulkarni, et al., J. Appl. Phys., 111, 064702 (2012).

    Article  Google Scholar 

  49. J. Wang, L. H. Zhu, J. Li, et al., Chin. Chem. Lett., 18, 1005 – 1008 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the University of Tabriz for providing fellowships for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Arsalani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pur, F.N., Arsalani, N. & Safa, K.D. Novel Free-Radical Scavengers Based on Ferrofluid/Polyaniline Nanocomposites. Pharm Chem J 51, 1138–1142 (2018). https://doi.org/10.1007/s11094-018-1754-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1754-0

Keywords

Navigation