Skip to main content
Log in

Dielectric Barrier Discharge Processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, Their Mixtures with Air, N2, CO2 and Analysis of Their Decomposition Products

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The experimental study of the degradation of gaseous dielectrics after processing in the dielectric barrier discharge (DBD) is presented. Two pure gases trans-CF3CH=CHF (HFO-1234ze(E)), perfluoroketone CF3C(O)CF(CF3)2 (C5K), and also the following mixtures 75 %HFO-1234ze(E):25 %N2, 12 %C5K:88 %N2, 18.5 %C5K:81.5 %dry air, 9 %C5K:57.5 %HFO-1234ze(E):33.5 %N2, 9 %C5K:56 %HFO-1234ze(E):35 %CO2 have been used as test-gases. A content of the decomposition products of the gases before and after a 5-h workout in the barrier discharge has been determined by means of the chromatography-mass spectrometry and gas chromatography methods. Dilution of C5K with dry air greatly increases the degree of conversion of the source gas in the barrier discharge. Dilution of HFO-1234ze(E) and C5K with nitrogen, and the use of ternary mixtures 9 %C5K:57.5 %HFO-1234ze(E):33.5 %N2 and 9 %C5K:56 %HFO-1234ze(E):35 %CO2 significantly reduces the degree of conversion of the mixture compared with the source gases in the barrier discharge. After the DBD processing of two test-gases a large quantity of toxic C3F6 was found in pure C5K, and also a large number of highly toxic CF3CCH was found in pure HFO-1234ze(E). The least amount of toxic products after the DBD processing was detected in mixtures HFO-1234ze(E):N2 and C5K:HFO-1234ze(E):N2. The mixture C5K:HFO-1234ze(E):N2 has the best features among studied mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsai W-T (2007) The decomposition products of sulfer hexafluoride (SF6): rewiews of environmental and health risk analysis. J Fluor Chem 128:1345–1352

    Article  CAS  Google Scholar 

  2. Reid AJ, Judd MD (2012) Ultra-wide bandwidth measurement of partial discharge current pulses in SF6. J Phys D Appl Phys 45:165203

    Article  Google Scholar 

  3. Krueger FH (1989) Partial discharge detection in high voltage equipment. Butterworth-Heinemann, Oxford

    Google Scholar 

  4. Kuffel E, Zaengl WS, Kuffel J (2000) High voltage engineering: fundamentals, 2d edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  5. Diaz J, Casanovas AM, Casanovas J (2003) Effect of the percentage of SF6 (100–10–5 %) on the decomposition of SF6–N2 mixtures under negative dc coronas in the presence of water vapour or oxygen. J Phys D Appl Phys 36:1558–1564

    Article  CAS  Google Scholar 

  6. Casanovas AM, Coll I, Pradayrol C, Casanovas J (1998) Influence of a solid insulator on the spark decomposition of SF6 and 50 % SF6 + 50 % CF4 mixtures. J Phys D Appl Phys 31:2835–2845

    Article  CAS  Google Scholar 

  7. Pradayrol C, Casanovas AM, Aventin C, Casanovas J (1997) Production of SO2F2, SOF4, (SOF2 + SF4), S2F10, S2OF10 and S2O2F10 in SF6 and (50–50) SF6–CF4 mixtures exposed to negative coronas. J Phys D Appl Phys 30:1356–1369

    Article  CAS  Google Scholar 

  8. Griffin GD, Sauers I, Christophorou LG, Easterly CE, Walsh PJ (1983) On the toxicity of sparked SF6. IEEE Trans Electr Insul EI-18:551–552

    Article  CAS  Google Scholar 

  9. Griffin GD, Nolan MG, Easterly CE, Sauers I, Votaw PC (1990) Concerning biological effects of spark-decomposed SF6. IEE Proc (Pt. A) 137:221–227

    CAS  Google Scholar 

  10. James DR, Sauers I, Griffin GD, Van Brunt RJ, Olthoff JK, Stricklett KL, Chu FY, Robins JR, Morrison HD (1993) Investigation of S2F10 production and mitigation in compressed SF6 insulated power systems. IEEE Electr Insul Mag 9(3):29–40

    Article  Google Scholar 

  11. Dervos CT, Vassiliou P (2000) Sulfur hexafluoride (SF6): global environmental effects and toxic byproduct formation. J Air Waste Manage Assoc 50:137–141

    Article  CAS  Google Scholar 

  12. Shih M, Lee WJ, Tsai CH, Tsai PJ, Chen CY (2002) Decomposition of SF6 in an RF plasma environment. J Air Waste Manage Assoc 52:1274–1280

    Article  CAS  Google Scholar 

  13. Lee HM, Chang MB, Wu KY (2004) Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. J Air Waste Manage Assoc 54:960–970

    Article  CAS  Google Scholar 

  14. Wang WF, Shih M, Tsai CH, Tsai PJ (2006) Total toxicity equivalents emissions of SF6, CHF3, and CCl2F2 decomposed in a RF plasma environment. Chemosphere 62:1681–1688

    Article  CAS  Google Scholar 

  15. Luly MH, Singh RR and Richard RG (2010) Compositions containing sulfur hexafluoride and uses thereof. US Patent. US 2010/0171062 A1

  16. Hodnebrog ∅, Etminan M, Fuglestvedt JS, Marston G, Myhre G, Nielsen CJ, Shine KP, Wallington TJ (2013) Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev Geophys 51:300–378

    Article  Google Scholar 

  17. Lallier J-P, Rastelletti E Compositions based on fluorinated hydrocarbons and secondary butanol for defluxing electronic boards. EP 1 678 288 B1. Intern Publ number: WO 2005/026310

  18. Taniguchi N, Wallington TJ, Hurley MD, Guschin AG, Molina LT, Molina MJ (2003) Atmospheric chemistry of C2F5C(O)CF(CF3)2: photolysis and reaction with Cl atoms, OH radicals, and ozone. J Phys Chem A 107:2674–2679

    Article  CAS  Google Scholar 

  19. Kogelschatz U (2002) Filamentary, patterned and diffuse barrier discharges. IEEE Trans Plasma Sci 30:1400–1408

    Article  CAS  Google Scholar 

  20. Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges. Principle and applications. J Phys IV FRANCE 7(C4):47–66

    Article  Google Scholar 

  21. Siliprandi RA, Roman HE, Barni R, Riccardi C (2008) Characterization of the streamer regime in dielectric barrier discharges. J Appl Phys 104:063309

    Article  Google Scholar 

  22. Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618–2636

    Article  CAS  Google Scholar 

  23. Kaptsov NA (1950) The electric phenomena in gases and vacuum. Gostekhizdat, Moscow (in Russian)

    Google Scholar 

  24. Mraihi A, Merbahi N, Yousfi M, Abahaze’e’m A, Eichwald O (2011) Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure. Plasma Sourc Sci Technol 20:065002

    Article  Google Scholar 

  25. Antao DS, Staack DA, Fridman A, Farouk B (2009) Atmospheric pressure dc corona discharges: operating regimes and potential applications. Plasma Sources Sci&Technol 18:035016

    Article  Google Scholar 

  26. Grabowski LR, van Veldhuizeen EM, Rutgers WR (2005) Removal of phenol from water: a comparison of energization methods. J Adv Oxid Technol 8:142–149

    CAS  Google Scholar 

  27. Penetrante BM, Hsiao MC, Merritt BT, Vogtlin GE, Wallman PH (1995) Comparison of electrical discharge techniques for nonthermal plasma processing of NO in N2. IEEE Trans Plasma Sci 23:679–687

    Article  CAS  Google Scholar 

  28. Rosocha LA, Korzeekwa RA (1999) Advanced oxidation and reduction processes in the gas phase using nonthermal plasmas. J Adv Oxid Technol 4:247–264

    CAS  Google Scholar 

  29. Kim Y, Kang WS, Park JM, Hong SH, Song Y-H, Kim SJ (2004) Experimental and numerical analysis of streamers in pulsed corona and dielectric barrier discharges. IEEE Trans Plasma Sci 32:18–24

    Article  CAS  Google Scholar 

  30. Pek´arek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201

    Article  Google Scholar 

  31. Kogelschatz U (2003) Dielectric-barrier discharges. Their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  32. Tatarinov AV, Shakhatov VA, Bilera IV, Avtaeva SV (2015) Comparative studies of decomposition of trans-1,3,3,3-tetrafluoropropene, 2,3,3,3-tetrafluoropropene, perfluoro-(3-methylbutan-2-on) and sulfur hexafluoride in the barrier discharge. High Energy Chem (accepted for publishing)

  33. Clayton JW (1967) Fluorocarbon toxity and biological action. Fluorine Chem Rev 1:197–242

    CAS  Google Scholar 

  34. Clayton JW (1977) Toxicology of the fluoroalkanes: review and research needs. Env Health Persp 21:255–267

    Article  CAS  Google Scholar 

  35. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurological Sci 262:122–130

    Article  CAS  Google Scholar 

  36. Brock WJ (1999) Hydrogen fluoride: how toxic is toxic? A hazard and risk analysis. In: Halon Options Technical Working Conference pp 559–566

  37. Samoylovich VG, Gibalov VI, Kozlov KV (1989) Physical chemistry of the barrier discharge. MSU Publishing House, Moscow (in Russian)

    Google Scholar 

  38. Avtaeva S (2011) Barrier discharge. Research and application. LAP Lambert Academic Publishing GmbH & Co. KG, Saarbrücken (in Russian)

    Google Scholar 

  39. Ogata A, Kim H-H, Futamura S, Mizuno K (2004) Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma. Appl Catal B Environ 53:175–180

    Article  CAS  Google Scholar 

  40. Takahashi K, Hori M, Goto T (1996) Fluorocarbon radicals and surface reactions in fluorocarbon high density etching plasma. I. O2 addition to electron cyclotron resonance plasma employing CHF3. J Vac Sci Technol, A 14:2004–2010

    Article  CAS  Google Scholar 

  41. Spiess FJ, Chen X, Brock SL, Suib SL, Hayashi Y, Matsumoto H (2000) Destruction of Freons by the use of high-voltage glow plasmas. J Phys Chem A 104:11111–11120

    Article  CAS  Google Scholar 

  42. Mok YS, Demidyuk V, Whitehead JC (2008) Decomposition of hydrofluorocarbons in dielectric-packed plasma reactor. J Phys Chem A 112:6586–6591

    Article  CAS  Google Scholar 

  43. van Zant P (2000) Microchip fabrication: a practical guide to semiconductor processing, 4th edn. McGraw Hill Books, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tatarinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatarinov, A.V., Bilera, I.V., Avtaeva, S.V. et al. Dielectric Barrier Discharge Processing of trans-CF3CH=CHF and CF3C(O)CF(CF3)2, Their Mixtures with Air, N2, CO2 and Analysis of Their Decomposition Products. Plasma Chem Plasma Process 35, 845–862 (2015). https://doi.org/10.1007/s11090-015-9635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9635-8

Keywords

Navigation