Skip to main content
Log in

High-Temperature Corrosion of Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C Alloy in N2/0.1%H2S Gas

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C alloy was corroded at 800–1100 °C for 200 h in N2/0.1%H2S gas to characterize its corrosion behavior in an aggressive H2S-containing environment. The alloy displayed superior corrosion resistance because Ti and Al preferentially reacted with impurity oxygen in the gas to form TiO2 and Al2O3. It corroded primarily by outward diffusion of Ti, Al, W, and Cr in addition to inward transport of sulfur, nitrogen, and oxygen. Scales were adherent and consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (TiO2, Al2O3)-mixed layer. TiN and Ti2AlN formed at the scale/matrix interface where sulfur, Nb, W, and Cr segregated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. W. Kim and S. L. Kim, Journal of Metals 70, 553 (2018).

    Google Scholar 

  2. S. Y. Park, D. Y. Seo, S. W. Kim, S. E. Kim, J. K. Hong and D. B. Lee, Intermetallics 74, 8 (2016).

    Article  Google Scholar 

  3. Y. Shida and H. Anada, Oxidation of Metals 45, 197 (1996).

    Article  Google Scholar 

  4. J. Dai, J. Zhu, C. Chen and F. Weng, Journal of Alloys and Compounds 685, 784 (2016).

    Article  Google Scholar 

  5. J. W. Fergus, Materials Science and Engineering A 338, 108 (2002).

    Article  Google Scholar 

  6. Y. Shida and H. Anada, Corrosion Science 35, 945 (1993).

    Article  Google Scholar 

  7. Y. Shida and H. Anada, Materials Transactions JIM 35, 623 (1994).

    Article  Google Scholar 

  8. D. B. Lee and S. W. Woo, Metals and Materials International 11, 141 (2005).

    Article  Google Scholar 

  9. X. Y. Li and S. Taniguchi, Materials Science and Engineering A 398, 268 (2005).

    Article  Google Scholar 

  10. R. John, Sulfidation and mixed gas corrosion of alloys, in Shreir’s Corrosion, 4th edn., eds. R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott, Vol. 1 (Elsevier, Amsterdam, 2010), pp. 240–271.

  11. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-temperature Oxidation of Metals, 2nd ed (Cambridge University Press, England, 2006), pp. 63–204.

    Book  Google Scholar 

  12. G. Y. Lai, High-Temperature Corrosion and Materials Applications (ASM International, USA, 2007), pp. 201–234.

    Google Scholar 

  13. F. Lang, Z. Yu, S. Gedevanishvilic, S. C. Deevic, S. Hayashi and T. Narita, Intermetallics 12, 469 (2004).

    Article  Google Scholar 

  14. D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, England, 2008), pp. 455–496.

    Book  Google Scholar 

  15. W. Kai, M. T. Chang and C. Y. Bai, Oxidation of Metals 56, 191 (2001).

    Article  Google Scholar 

  16. H. L. Du, P. K. Datta, D. Hu and X. Wu, Corrosion Science 49, 2406 (2007).

    Article  Google Scholar 

  17. T. Izumi, T. Yoshioka, S. Hayashi and T. Narita, Intermetallics 10, 353 (2002).

    Article  Google Scholar 

  18. N. J. Simms, J. F. Norton and T. M. Lowe, Journal de Physique IV 3, 807 (1993).

    Article  Google Scholar 

  19. F. H. Froes and C. Suryanarayana, Titanium aluminides, in Physical Metallurgy and Processing of Intermetallic Compounds, eds. N. S. Stoloff and V. K. Sikka (Chapman & Hall, Boca Raton, 1996), pp. 297–350.

  20. M. Schulte and M. Schütze, Oxidation of Metals 51, 55 (1999).

    Article  Google Scholar 

  21. D. Y. Seo, T. D. Nguyen and D. B. Lee, Oxidation of Metals 74, 145 (2010).

    Article  Google Scholar 

  22. J. D. Sunderkötter, H. J. Schmutzler, V. A. C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M. F. Stroosnijder, Intermetallics 5, 525 (1997).

    Article  Google Scholar 

  23. F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski and G. H. Meier, Oxidation of Metals 50, 269 (1998).

    Article  Google Scholar 

  24. J. M. Rakowski, F. S. Pettit, G. H. Meier, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metallurgica et Materialia 33, 997 (1995).

    Article  Google Scholar 

  25. H. L. Du, A. Aljarany, P. K. Datta and J. S. Burnell-Gray, Corrosion Science 47, 1706 (2005).

    Article  Google Scholar 

  26. M. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, Journal of Metals 48(11), 46 (1996).

  27. S. Becker, A. Rhamel, M. Schorr and M. Schütze, Oxidation of Metals 38, 425 (1992).

    Article  Google Scholar 

  28. M. W. Barsoum, M. Ali and T. El-Raghy, Metallurgical and Materials Transactions A 31, 1857 (2000).

    Google Scholar 

  29. Q. Wang, W. Garkas, A. F. Renteria, C. Leyens, C. Sun and K. Kim, Oxidation behaviour of a Ti2AlN MAX-phase coating, IOP Conference Series: Materials Science and Engineering 18, 082025 (2011).

  30. W. Lu, C. L. Chen, F. H. Wang, J. P. Lin, G. L. Chen and L. L. He, Scripta Materialia 56, 773 (2007).

    Article  Google Scholar 

  31. Z. J. Lin, M. J. Zhuo, M. S. Li, J. Y. Wang and Y. C. Zhou, Scripta Materialia 56, 1115 (2007).

    Article  Google Scholar 

  32. R. G. Munro, Journal of the American Ceramic Society 80, 1919 (1997).

    Google Scholar 

  33. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed (Wiley, New York, 1975), p. 594.

    Google Scholar 

  34. J. Kumpfert and C. Leyens, in Titanium and Titanium Alloys: Fundamentals and Applications, eds. C. Leyens and M. Peters (Wiley, New York, 2003), p. 66.

  35. H. J. Grabke, in High Temperature Materials Corrosion in Coal Gasification Atmospheres, ed. J. F. Norton (Elsevier Applied Science Publishers, England, 1984), pp. 59–82.

  36. D. B. Lee, Y. C. Lee, Y. J. Kim and S. W. Park, Oxidation of Metals 54, 575 (2000).

    Article  Google Scholar 

  37. Y. M. Chiang, D. P. Birnie and W. D. Kingery, Physical Ceramics (John Wiley & Sons, New York, 1996), p. 109.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the project “Development of the High-Efficiency Low-Emission Future Energy Production Technology (EO15580)” of National Research Council of Science and Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-07-KIER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bok Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuke, S., Kim, S.W., Hahn, J. et al. High-Temperature Corrosion of Ti–46Al–6Nb–0.5W–0.5Cr–0.3Si–0.1C Alloy in N2/0.1%H2S Gas. Oxid Met 91, 677–689 (2019). https://doi.org/10.1007/s11085-019-09902-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09902-4

Keywords

Navigation