Skip to main content
Log in

Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Influence of pre-oxidation treatment on the oxidation resistance of F91 to CO2 at 550 °C was investigated. The formation of the thin scale of (Fe, Cr)2O3 corundum-type oxides was achieved by pre-oxidation in air, which significantly improved the oxidation resistance. Nodule nucleation and subsequent growth were analyzed and interpreted. Influences of pre-oxidation temperature and time on the oxidation resistance to CO2 are explained by presenting concepts of insufficient pre-oxidation and excess pre-oxidation. A coordination between pre-oxidation temperature and time is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S. Sridhar, P. Rozzelle, B. Morreale and D. Alman, Metallurgical and Materials Transactions A 42, 871 (2011).

    Article  Google Scholar 

  2. S. M. Benson and F. M. Orr, MRS Bulletin 33, 303 (2008).

    Article  Google Scholar 

  3. IPCC, in Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. J. Meyer (Cambridge University Press, Cambridge, 2005)

  4. C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 363 (1980).

    Article  Google Scholar 

  5. J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, International Journal of Materials Research 101, 287 (2010).

    Article  Google Scholar 

  6. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).

    Article  Google Scholar 

  7. K. Kaya, S. Hayashi and S. Ukai, ISIJ International 54, 1379 (2014).

    Article  Google Scholar 

  8. J. Wang, S. Lu, L. Rong, D. Li and Y. Li, Corrosion Science 111, 13 (2016).

    Article  Google Scholar 

  9. S. Tang, S. Zhu, X. Tang, H. Pan, X. Chen and Z. D. Xiang, Corrosion Science 80, 374 (2014).

    Article  Google Scholar 

  10. T. D. Nguyen, J. Zhang and D. J. Young, Corrosion Science 76, 231 (2013).

    Article  Google Scholar 

  11. F. Abe, H. Kutsumi, H. Haruyama and H. Okubo, Corrosion Science 114, 1 (2016).

    Article  Google Scholar 

  12. T. Sundararajan, S. Kuroda, T. Itagaki and F. Abe, ISIJ International 43, 95 (2003).

    Article  Google Scholar 

  13. T. Sundararajan, S. Kuroda and F. Abe, Corrosion Science 47, 1129 (2005).

    Article  Google Scholar 

  14. T. Jayakumar, M. D. Mathew and K. Laha, Procedia Engineering 55, 259 (2013).

    Article  Google Scholar 

  15. L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant and K. Rousseau, Corrosion Science 100, 253 (2015).

    Article  Google Scholar 

  16. F. Rouillard, G. Moine, L. Martinelli and J. C. Ruiz, Oxidation of Metals 77, 27 (2012).

    Article  Google Scholar 

  17. F. Rouillard and T. Furukawa, Corrosion Science 105, 120 (2016).

    Article  Google Scholar 

  18. Y. Zheng, M. H. S. Bidabadi, L. Yang, A. Rehman, C. Zhang, H. Chen and Z. G. Yang, Oxidation of Metals 1 (2018).

  19. M. Halvarsson, J. E. Tang, H. Asteman, J. E. Svensson and L. G. Johansson, Corrosion Science 48, 2014 (2006).

    Article  Google Scholar 

  20. I. Wolf, H. J. Grabke and P. Schmidt, Oxidation of Metals 29, 289 (1988).

    Article  Google Scholar 

  21. H. E. Evans, A. T. Donaldson and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  Google Scholar 

  22. M. H. S. Bidabadi, Z. Yu, A. Rehman, J. G. He, C. Zhang, H. Chen, and Z.-G. Yang, Oxidation of Metals 1 (n.d.).

  23. K.F. McCarty and D.R. Boehme, Journal of Solid State Chemistry 79, 19 (1989).

    Article  Google Scholar 

  24. D. L. A. De Faria, S. Venâncio Silva and M. T. De Oliveira, Journal of Raman Spectroscopy 28, 873 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China [2015GB118001]. Yu Zheng thanks the CSC for the financial support [201706210110] to visit University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Shirani Bidabadi, M.H., Wang, G. et al. Coordination of Pre-oxidation Time and Temperature for a Better Corrosion Resistance to CO2 at 550 °C. Oxid Met 91, 657–675 (2019). https://doi.org/10.1007/s11085-019-09901-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09901-5

Keywords

Navigation