Skip to main content
Log in

Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Herein we study theoretically surface plasmon polariton (SPP) wave propagation along the nanostructured graphene-based metamaterial/corrugated metal interface. We apply the effective medium approximation formalism aiming to physically model nanostructured metamaterial. The transfer matrix approach is applied to compute the dispersion relationship for SPP waves. It has been concluded that the groove width (a) and the chemical potential (µ) parameters have a dramatical impact aiming to engineer resonance surface plasmon frequencies of the propagation modes. Moreover, one can tune the bandgap corresponding to non-propagation regime by modifying groove width parameter. The impact of the groove width (a) and the chemical potential (µ) on the propagation length was investigated. The present work may have potential applications in optical sensing in terahertz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agranovich, V.M., Kravtsov, V.E.: Notes on crystal optics of superlattices. Solid State Commun. 55(1), 85–90 (1985)

    ADS  Google Scholar 

  • Andrew, P., Barnes, W.L.: Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004)

    ADS  Google Scholar 

  • Anwar, R.S., Ning, H., Mao, L.: Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures at microwave and terahertz regime. Digit. Commun. Netw. 4(4), 244–257 (2017)

    Google Scholar 

  • Berini, P.: Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484–588 (2009)

    Google Scholar 

  • Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010)

    ADS  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Ebbesen, T.W.: Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005)

    ADS  Google Scholar 

  • Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.-Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    ADS  Google Scholar 

  • Chang, Y.-C., Liu, C.-H., Liu, C.-H., Zhang, S., Marder, S.R., Narimanov, E.E., Zhong, Z., Norris, T.B.: Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 7, 10568 (2016)

    ADS  Google Scholar 

  • Crassee, I., Levallois, J., Walter, A.L., Ostler, M., Bostwick, A., Rotenberg, E., Seyller, T., van der Marel, D., Kuzmenko, A.B.: Giant Faraday rotation in single- and multilayer graphene. Nat. Phys. 7, 48–51 (2011)

    Google Scholar 

  • Falkovsky, L.A.: Optical properties of graphene. J. Phys: Conf. Ser. 129(1), 012004 (2008)

    Google Scholar 

  • Fang, Z., Liu, Z., Wang, Y., Ajayan, P.M., Nordlander, P., Halas, N.J.: Graphene-antenna sandwich photodetector. Nano Lett. 12(7), 3808–3813 (2012)

    ADS  Google Scholar 

  • Faryad, M., Hall, A.S., Barber, G.D., Mallouk, T.E., Lakhtakia, A.: Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multi-layered isotropic dielectric material. J. Opt. Soc. Am. B 29(4), 704–713 (2012)

    ADS  Google Scholar 

  • Garcia-Vidal, F.J., Martin-Moreno, L., Pendry, J.B.: Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A-Pure Appl. Opt. 7, S97 (2005)

    ADS  Google Scholar 

  • Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  • Gomez-Diaz, J.S., Moldovan, C., Capdevila, S., Romeu, J., Bernard, L.S., Magrez, A., Ionescu, A.M., Perruisseau-Carrier, J.: Self-biased reconfigurable graphene stacks for terahertz plasmonics. Nat. Commun. 6, 6334 (2015)

    ADS  Google Scholar 

  • Gric, T.: Surface-plasmon-polaritons at the interface of nanostructured metamaterials. Prog. Electromag. Res. 46, 165–172 (2016)

    Google Scholar 

  • Gric, T., Hess, O.: Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials. Opt. Express 25(10), 11466–11476 (2017a)

    ADS  Google Scholar 

  • Gric, T., Hess, O.: Controlling hybrid-polarization surface plasmon polaritons in dielectric-transparent conducting oxides metamaterials via their effective properties. J. Appl. Phys. 122, 193105 (2017b)

    ADS  Google Scholar 

  • Gric, T., Wartak, M.S., Cada, M., Wood, J.J., Hess, O., Pistora, J.: Spoof plasmons in corrugated semiconductors. J. Electromagnet. Wave 29, 1899–1907 (2015)

    Google Scholar 

  • Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photon. 6, 749–758 (2012)

    ADS  Google Scholar 

  • Hajian, H., Rukhlenko, I.D., Leung, P.T., Caglayan, H., Ozbay, E.: Guided plasmon modes of a graphene-coated Kerr slab. Plasmonics 11(3), 735–741 (2016)

    Google Scholar 

  • Hajian, H., Caglayan, H., Ozbay, E.: Long-range Tamm surface plasmons supported by graphene-dielectric metamaterials. J. Appl. Phys. 121(3), 033101 (2017)

    ADS  Google Scholar 

  • Hajian, H., Serebryannikov, A.E., Ghobadi, A., Demirag, Y., Butun, B., Vandenbosch, G.A.E., Ozbay, E.: Tailoring far-infrared surface plasmon polaritons of a single-layer graphene using plasmon-phonon hybridization in graphene-LiF heterostructures. Sci. Rep. 8, 13209 (2018)

    ADS  Google Scholar 

  • Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    ADS  Google Scholar 

  • Iorsh, I., Orlov, A., Belov, P., Kivshar, Y.: Interface modes in nanostructured metal-dielectric metamaterials. Appl. Phys. Lett. 99, 151914 (2011)

    ADS  Google Scholar 

  • Iorsh, I.V., Mukhin, I.S., Shadrinov, I.V., Belov, P.A., Kivshar, Y.S.: Hyperbolic metamaterials based on multilayer graphene structures. Phys. Rev. B 87(7), 075416 (2013)

    ADS  Google Scholar 

  • Jeon, T.-I., Grischkowsky, D.: THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet. Appl. Phys. Lett. 88, 061113 (2006)

    ADS  Google Scholar 

  • Jiang, T., Shen, L., Zhang, X., Ran, L.-X.: High-order modes of spoof surface Plasmon polaritons on periodically corrugated metal surfaces. Prog. Electromagn. Res. 8, 91–102 (2009)

    Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972)

    ADS  Google Scholar 

  • Khromova, I., Andryieuski, A., Lavrinenko, A.: Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials. Laser Photon. Rev. 8(6), 916–923 (2014)

    ADS  Google Scholar 

  • Krasavin, A.V., Zheludev, N.I.: Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004)

    ADS  Google Scholar 

  • Krasavin, A.V., Zayats, A.V., Zheludev, N.I.: Active control of surface plasmon–polariton waves. J. Opt. A: Pure Appl. Opt. 7, S85 (2005)

    ADS  Google Scholar 

  • Lamprecht, B., Krenn, J.R., Schider, G., Ditlbacher, H., Salerno, M., Felidj, N., Leitner, A., Aussenegg, F.R., Weeber, J.C.: Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 79, 51 (2001)

    ADS  Google Scholar 

  • Li, Z., Bao, K., Fang, Y., Guan, Z., Halas, N.J., Nordlander, P., Xu, H.: Effect of a proximal substrate on plasmon propagation in silver nanowires. Phys. Rev. B 82, 241402 (2010)

    ADS  Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., Requicha, A.A.G.: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003)

    ADS  Google Scholar 

  • Morozovska, A.N., Kurchak, A.I., Strikha, M.V.: Graphene exfoliation at a ferroelectric domain wall induced by the piezoelectric effect: impact on the conductance of the graphene channel. Phys. Rev. Appl. 8(5), 054004 (2017)

    ADS  Google Scholar 

  • Nikitin, AYu., Guinea, F., Martin-Moreno, L.: Resonant plasmonic effects in periodic graphene antidot arrays. Appl. Phys. Lett. 101(15), 151119 (2012)

    ADS  Google Scholar 

  • Orazbayev, B., Beruete, M., Khromova, I.: Tunable beam steering enabled by graphene metamaterials. Opt. Express 24(8), 8848–8861 (2016)

    ADS  Google Scholar 

  • Othman, M.A.K., Guclu, C., Capolino, F.: Graphene-dielectric composite metamaterials: evolution from elliptic to hyperbolic wavevector dispersion and the transverse epsilon-near-zero condition. J. Nanophoton. 7(1), 073089 (2013a)

    ADS  Google Scholar 

  • Othman, M.A.K., Guclu, C., Cappolino, F.: Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. Opt. Express 21(6), 7614–7632 (2013b)

    ADS  Google Scholar 

  • Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J.: Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

    ADS  Google Scholar 

  • Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)

    Google Scholar 

  • Ritchie, R.H.: Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957)

    ADS  MathSciNet  Google Scholar 

  • Rodrigo, D., Tittl, A., Limaj, O., Garcia de Abajo, F.J., Pruneri, V., Altug, H.: Double-layer graphene for enhanced tunable infrared plasmonics. Light: Sci. Appl. 6, e16277 (2017)

    Google Scholar 

  • Rusina, A., Durach, M., Stockman, M.I.: Theory of spoof plasmons in real metals. Appl. Phys. A 100(2), 375–378 (2010)

    ADS  Google Scholar 

  • Serebryannikov, A.E., Hajian, H., Beruete, M., Ozbay, E., Vandenbosch, G.A.E.: Tunable deflection and asymmetric transmission of THz waves using a thin slab of graphene-dielectric metamaterial, with and without ENZ components. Opt. Mater. Express 8, 3887–3898 (2018)

    ADS  Google Scholar 

  • Trofimov, A., Gric, T.: Surface plasmon polaritons in hyperbolic nanostructured metamaterials. J. Electromagn. Waves Appl. 32(14), 1857–1867 (2018)

    Google Scholar 

  • Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)

    ADS  Google Scholar 

  • Wang, K., Mittleman, D.M.: Metal wires for terahertz wave guiding. Nature 432(18), 376–379 (2004)

    ADS  Google Scholar 

  • Wu, J., Jiang, L., Guo, J., Dai, X., Xiang, Y., Wen, S.: Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal. Opt. Express 24(15), 17103–17114 (2016)

    ADS  Google Scholar 

  • Xiang, Y., Guo, J., Dai, X., Wen, S., Tang, D.: Engineered surface Bloch waves in graphene-based hyperbolic metamaterials. Opt. Express 22(3), 3054–3062 (2014a)

    ADS  Google Scholar 

  • Xiang, Y., Dai, X., Guo, J., Zhang, H., Wen, S., Tang, D.: Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 4, 5483 (2014b)

    ADS  Google Scholar 

  • Yao, Y., Kats, M.A., Gevenet, P., Yu, N., Song, Y., Kong, J., Capasso, F.: Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett. 13(3), 1257–1264 (2013)

    ADS  Google Scholar 

  • Zhu, B., Ren, G., Zheng, S., Lin, Z., Jian, S.: Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices. Opt. Express 21(14), 17089–17096 (2013)

    ADS  Google Scholar 

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie Grant Agreement No 713694 and from Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/R024898/1). E.U.R. also acknowledges support and the Russian Science Foundation (Grant No. 18-15-00172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Gric.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioannidis, T., Gric, T. & Rafailov, E. Surface plasmon polariton waves propagation at the boundary of graphene based metamaterial and corrugated metal in THz range. Opt Quant Electron 52, 10 (2020). https://doi.org/10.1007/s11082-019-2128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-2128-x

Keywords

Navigation