Skip to main content
Log in

Low-thrust Lambert transfer based on two-stage constant-vector thrust control method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2022

This article has been updated

Abstract

The low-thrust Lambert transfer refers to that the spacecraft achieves the orbital transfer whose boundary conditions are represented by two sets of orbital elements at initial and final time by the low-thrust propulsion system. The modulus and direction of the low-thrust solutions in previous methods change with time, which leads to high control requirements for the engine. In this paper, to reduce the requirements of the engine, a practical two-stage constant-vector thrust control method is proposed, in which the magnitude and direction of the thrust are deemed as segmental constant value in TNH frame, where three components of the thrust are ft, fn, and fh. First, the mathematical model of the two-stage constant-vector thrust is formulated, and a rapid algorithm is presented to obtain the solution based on the linearized sensitivity matrix, which describes the relationship between the constant-vector thrust and the change of the orbital elements approximately. Furthermore, two low-thrust Lambert strategies based on the two-stage constant-vector thrust are presented for cases of short-time transfer and long-time transfer. A sequence of numerical simulations demonstrated the efficiency of the proposed approaches. The proposed control strategies are solved rapidly, and they are also suitable for different types of orbits with J2 perturbation, which are practical options for engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

References

  1. Baresi, N., Dell’Elce, L., Cardoso dos Santos, J. et al.: Long-term evolution of mid-altitude quasi-satellite orbits. Nonlinear Dyn. 99, 2743–2763 (2020). https://doi.org/10.1007/s11071-019-05344-4

  2. Lara, M.: Solution to the main problem of the artificial satellite by reverse normalization. Nonlinear Dyn 101, 1501–1524 (2020). https://doi.org/10.1007/s11071-020-05857-3

    Article  Google Scholar 

  3. Cheng, X., Li, H., Zhang, R.: Autonomous trajectory planning for space vehicles with a Newton–Kantorovich/convex programming approach. Nonlinear Dyn 89, 2795–2814 (2017). https://doi.org/10.1007/s11071-017-3626-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Qian, Y.J., Zhang, W., Yang, X.D., et al.: Energy analysis and trajectory design for low-energy escaping orbit in Earth-Moon system. Nonlinear Dyn 85, 463–478 (2016). https://doi.org/10.1007/s11071-016-2699-z

    Article  MathSciNet  Google Scholar 

  5. Javanmardi, N., Yaghmaei, A., Yazdanpanah, M.J.: Spacecraft formation flying in the port-Hamiltonian framework. Nonlinear Dyn 99, 2765–2783 (2020). https://doi.org/10.1007/s11071-019-05445-0

    Article  MATH  Google Scholar 

  6. Bai, S., Han, C., Rao, Y., Sun, X., Sun, Y.: New fly-around formations for an elliptical reference orbit. Acta Astronaut. 171, 335–351 (2020). https://doi.org/10.1016/j.actaastro.2020.03.008

    Article  Google Scholar 

  7. Bai, S., Han, C., Sun, X., Zhang, H., Jiang, Y.: Teardrop hovering formation for elliptical orbit considering J2 perturbation. Aerosp. Sci. Technol. 106 (2020). https://doi.org/10.1016/j.ast.2020.106098

  8. Baranov, A.A., Grishko, D.A., Khukhrina, O.I., Chen, D.: Optimal transfer schemes between space debris objects in geostationary orbit. Acta Astronaut. 169, 23–31 (2020). https://doi.org/10.2514/1.G002409JGCODS0731-5090

    Article  Google Scholar 

  9. Yu, J., Chen, X., Chen, L., Hao, D.: Optimal scheduling of GEO debris removing based on hybrid optimal control theory. Acta Astronaut. 93, 400–409 (2014). https://doi.org/10.1016/j.actaastro.2020.01.001

    Article  Google Scholar 

  10. Dang, Z., Wang, Z., Zhang, Y.: Modeling and analysis of relative hovering control for spacecraft. J. Guid. Control Dyn. 37(4), 1091–1102 (2014). https://doi.org/10.2514/1.G000004

    Article  Google Scholar 

  11. Battin, R.H.: Lambert’s problem revisited. Aiaa J. 15, 707–713 (1977)

    Article  MathSciNet  Google Scholar 

  12. Avanzini, G.: A simple lambert algorithm. J. Guid. Control Dyn. 31, 1587–1594 (2008). https://doi.org/10.2514/1.36426

    Article  Google Scholar 

  13. Engels, R.C., Junkins, J.L.: The gravity-perturbed Lambert problem: a KS variation of parameters approach. Celest. Mech. Dyn. Astr. 24(1), 3–21 (1981). https://doi.org/10.1007/BF01228790

    Article  MathSciNet  MATH  Google Scholar 

  14. Woollands, R.M., Read, J., Hernandez, K., Probe, A., Junkins, J.L.: Unified Lambert tool for massively parallel applications in space situational awareness. J. Astronaut Sci 65(1), 29–45 (2018). https://doi.org/10.1007/BF03321534

    Article  Google Scholar 

  15. Der G. J.: The Superior Lambert Algorithm. In: Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui Economic Development Board, Maui, HI, 462–490 (2011)

  16. Shang, H., Cui, P., Qiao, D., Xu, R.: Lambert solution and application for interplanetary low-thrust trajectories. Acta Aeronaut et Astronaut Sinica. 31(9), 1752–1757 (2010). https://doi.org/10.2514/1.3890

    Article  Google Scholar 

  17. Avanzini, G., Palmas, A., Vellutini, E.: Solution of low-thrust lambert problem with perturbative expansions of equinoctial elements. J. Guid. Control Dyn., 38 1585–1601 (2015). https://doi.org/10.2514/1.G001018

  18. Lantoine, G., Russell, R.P.: Complete closed-form solutions of the Stark problem. Celest. Mech. Dyn. Astr. 109, 333–366 (2011)

    Article  MathSciNet  Google Scholar 

  19. Docherty, S.Y., Macdonald, M.: Analytical sun-synchronous low-thrust orbit maneuvers. J. Guid. Control Dyn. 35, 681–686 (2012)

    Article  Google Scholar 

  20. Zhang, S., Han, C., Sun, X.: New solution for rendezvous between geosynchronous satellites using low thrust. J. Guid. Control Dyn. 41, 1396–1405 (2018). https://doi.org/10.2514/1.G003270

    Article  Google Scholar 

  21. Petropoulos, A.E., Longuski, J.M., Vinh, N.X.: Shape-based analytic representations of low-thrust trajectories for gravity-assist applications, In: Proceedings of the 2000 Advances in Astronautical Sciences.Girdwood, USA: AAS, 563–581 (2000)

  22. Vellutini, E., Avanzini, G.: Shape-based design of low-thrust trajectories to cislunar lagrangian point. J. Guid. Control Dyn. 37, 1329–1335 (2014)

    Article  Google Scholar 

  23. Petropoulos, A.E., Sims, J.A.: A Review of Some Exact Solutions to the Planar Equations of Motion of a Thrusting Spacecraft. In: Proceedings of the 2nd International Symposium on Low-Thrust Trajectory (LoTus-2), (2002)

  24. Vasile, M., Schütze, O., Junge, O., Radi Ce, G., Msc, P.D.: Spiral trajectories in global optimisation of interplanetary and orbital transfers, Ariadna Study Report AO4919, 4106

  25. Taheri, E., Abdelkhalik, O.: Shape-based approximation of constrained low-thrust space trajectories using Fourier series. J. Space. Rock. 49, 535–545 (2012)

    Google Scholar 

  26. Abdelkhalik, O., Taheri, E.: Approximate on-off low-thrust space trajectories using fourier series. J. Space. Rock. 49, 962–965 (2012)

    Article  Google Scholar 

  27. Wall, B.J., Conway, B.A.: Shape-based approach to low-thrust rendezvous trajectory design. J. Guid. Control. Dyn. 32, 95–102 (2009)

    Article  Google Scholar 

  28. Han, C., Bai, S., Sun, X., Rao, Y.: hovering formation control based on two-stage constant thrust. J. Guid. Contr. Dynam. 43, 1–14 (2020). https://doi.org/10.2514/1.G0045958

    Article  Google Scholar 

  29. Bai, S., Han, C., Sun, X., Sun, Y.: New fly-around formations for an elliptical reference orbit. Acta Astronaut. 171, 335–351 (2020). https://doi.org/10.1016/j.actaastro.2020.03.008

    Article  Google Scholar 

  30. S. Bai, C. Han, X. Sun and Y. Rao, Practical maintenance strategies for teardrop hovering formation relative to elliptical orbit. Acta Astronaut 190 176–193(2022). https://doi.org/10.1016/j.actaastro.2021.08.045

  31. Han, C., Xie, H.: Research on algorithm of loopy Lambert transfer in space rendezvous. Chinese Space Sci. and Tech. 24, 9–14 (2004)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 11902012) and Fundamental Research Funds for the Central Universities (No. YWF-21-BJ-J-805). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

National natural science foundation of china, No. 11902012, Xiucong Sun, fundamental research funds for the central universities, No. YWF-21-BJ-J-805, Xiucong Sun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengzhou Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Bai, S. Low-thrust Lambert transfer based on two-stage constant-vector thrust control method. Nonlinear Dyn 110, 313–346 (2022). https://doi.org/10.1007/s11071-022-07608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07608-y

Keywords

Navigation