Skip to main content

Advertisement

Log in

Theoretical modeling and experimental evaluation of a magnetostrictive actuator with radial-nested stacked configuration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2022

This article has been updated

Abstract

Stacked magnetostrictive actuator (SMA) has the advantages of high energy density and high bandwidth, but the output stroke is relatively small and accompanied by strong hysteresis nonlinearity. Introducing the radial-nested stacked configuration, the stroke of a SMA can be increased without deteriorating its bandwidth. However, this configuration consists of three magnetostrictive rods of different shapes which brings more serious asymmetric hysteresis nonlinearity and poses a great challenge on the theoretical modeling of the actuator. In this paper, a magnetic equivalent circuit (MEC) model is established to describe the magnetic characteristic of radial-nested stack. Then, a nonlinear dynamic magnetization model is proposed with the combination of the MEC model and the Jiles-Atherton model. Finally, by considering the multi-degree-of-freedom (MDOF) mechanical dynamic system, a multiphysics comprehensive dynamic (MCD) model is established. What’s more, a prototype of radial-nested stacked Terfenol-D actuator (RSTA) is fabricated, a series of simulations and experiments are conducted to evaluate the proposed models. The parameters that cannot be calculated or measured in the model are identified by employing the multi-island genetic algorithm. Results show that: (a) the MEC model can accurately calculate the magnetic distribution of the RSTA with an error less than 0.2% compared with a finite element model; (b) the MCD model can accurately describe the RSTA output hysteresis nonlinearity under different operating frequencies and amplitudes with a root-mean-square (RMS) error less than 1.1 \(\upmu \hbox {m}\) (1.76%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. Huang, W., Wu, X., Guo, P.: Variable coefficient magnetic energy losses calculation model for giant magnetostrictive materials. IEEE Trans. Magn. 57(2), 1 (2021). https://doi.org/10.1109/TMAG.2020.3013393

    Article  Google Scholar 

  2. Li, R., Zhu, Y., Wang, R., Li, Y., Niyomwungeri, B.: Design and analysis of a nested structure micro-displacement amplification mechanism for a galfenol-based actuator. Smart Mater. Struct. 28(9), 095026 (2019). https://doi.org/10.1088/1361-665X/ab35c5

    Article  Google Scholar 

  3. Park, Y.W., Noh, M.D.: 1-D and 2-D magnetostrictive actuators. IEEE Trans. Magn. 55(7), 1 (2019). https://doi.org/10.1109/TMAG.2019.2891818

    Article  Google Scholar 

  4. Karunanidhi, S., Singaperumal, M.: Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve. Sens. Actuators, A 157(2), 185 (2010). https://doi.org/10.1016/j.sna.2009.11.014

    Article  Google Scholar 

  5. Wang, Z., Witthauer, A., Zou, Q., Kim, G.Y., Faidley, L.: Control of a magnetostrictive-actuator-based micromachining system for optimal high-speed microforming process. IEEE/ASME Trans. Mechatron. 20(3), 1046 (2015). https://doi.org/10.1109/TMECH.2014.2363787

    Article  Google Scholar 

  6. Wang, R., Zhu, Y., Jiang, Y., Chen, L.: Research on position control of bidirectional dual magnetostrictive rods-based electro-hydrostatic actuator with active rotary valve. Smart Mater. Struct. 29(3), 035003 (2020). https://doi.org/10.1088/1361-665x/ab6485

    Article  Google Scholar 

  7. Zhang, X., Li, B., Li, Z., Yang, C., Chen, X., Su, C.Y.: Adaptive neural digital control of hysteretic systems with implicit inverse compensator and its application on magnetostrictive actuator. IEEE Trans. Neural Netw. Learn. Syst (2020). https://doi.org/10.1109/TNNLS.2020.3028500

    Article  Google Scholar 

  8. Tongxun Yi, M.C., Gutmark, E.J.: Dynamics and control of a high frequency fuel valve and its application to active combustion control. https://doi.org/10.2514/6.2004-4034. Paper presented at the 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Fort Lauderdale, Florida, USA, (2004)

  9. Meng, A., Yang, J., Li, M., Jiang, S.: Research on hysteresis compensation control of GMM. Nonlinear Dyn. 83(1), 161 (2016). https://doi.org/10.1007/s11071-015-2316-6

    Article  MathSciNet  Google Scholar 

  10. Gao, X., Liu, Y.: Research of giant magnetostrictive actuator’s nonlinear dynamic behaviours. Nonlinear Dyn. 92(3), 793 (2018). https://doi.org/10.1007/s11071-018-4061-0

    Article  Google Scholar 

  11. Yi, S., Yang, B., Meng, G.: Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker. Nonlinear Dyn. 96(1), 535 (2019). https://doi.org/10.1007/s11071-019-04804-1

    Article  MATH  Google Scholar 

  12. Chen, J.L., Zhang, C.L., Xu, M.L., Zi, Y.Y., Zhang, X.N.: Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model. Mech. Syst. Signal Process. 50–51, 580 (2015). https://doi.org/10.1016/j.ymssp.2014.05.047

    Article  Google Scholar 

  13. Choi, K.B., Lee, J., Kim, G., Lim, H., Kwon, S., Lee, S.C.: Design and analysis of a flexure-based parallel XY stage driven by differential piezo forces. Int. J. Precis. Eng. Manuf. 21(8), 1547 (2020). https://doi.org/10.1007/s12541-020-00358-0

    Article  Google Scholar 

  14. Chen, L., Zhu, Y., Ling, J., Feng, Z.: Development and test of a two-dimensional stacked terfenol-D actuator with high bandwidth and large stroke. IEEE/ASME Trans. Mechatron. 26(4), 1951 (2021). https://doi.org/10.1109/TMECH.2021.3080395

    Article  Google Scholar 

  15. Lee, T., Chopra, I.: Design of piezostack-driven trailing-edge flap actuator for helicopter rotors. Smart Mater. Struct. 10(1), 15 (2001). https://doi.org/10.1088/0964-1726/10/1/302

    Article  Google Scholar 

  16. Chakrabarti, S., Dapino, M.J.: Hydraulically amplified terfenol-D actuator for adaptive powertrain mounts. J. Vib. Acoust. 133(6), 061015 (2011). https://doi.org/10.1115/1.4004669

    Article  Google Scholar 

  17. Ling, M., Cao, J., Jiang, Z., Lin, J.: Theoretical modeling of attenuated displacement amplification for multistage compliant mechanism and its application. Sens. Actuators, A 249, 15 (2016). https://doi.org/10.1016/j.sna.2016.08.011

    Article  Google Scholar 

  18. Zhu, Y.C., Yang, X.L., Wereley, N.M.: Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator. Smart Mater. Struct. (2016). https://doi.org/10.1088/0964-1726/25/8/085030

    Article  Google Scholar 

  19. Li, Y.S., Zhu, Y.C., Wu, H.T., Tang, D.B.: Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator. J. Intell. Mater. Syst. Struct. 25(3), 378 (2013). https://doi.org/10.1177/1045389X13498311

    Article  Google Scholar 

  20. Sun, X., Liu, Y., Hu, W., Sun, T., Hu, J.: Design optimization of a giant magnetostrictive driving system for large stroke application considering vibration suppression in working process. Mech. Syst. Signal Process. 138, 106560 (2020). https://doi.org/10.1016/j.ymssp.2019.106560

    Article  Google Scholar 

  21. Yang, Y., Yang, B., Niu, M.: Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dyn. 92(3), 1109 (2018). https://doi.org/10.1007/s11071-018-4112-6

    Article  Google Scholar 

  22. Yang, C., Peng, Z., Tai, J., Zhu, L., Telezing, B.J.K., Ombolo, P.D.: Torque characteristics analysis of slotted-type eddy-current couplings using a new magnetic equivalent circuit model. IEEE Trans. Magn. 56(9), 1 (2020). https://doi.org/10.1109/TMAG.2020.3009479

    Article  Google Scholar 

  23. Yeo, H.K., Lim, D.K., Jung, H.K.: Magnetic equivalent circuit model considering the overhang structure of an interior permanent-magnet machine. IEEE Trans. Magn. 55(6), 1 (2019). https://doi.org/10.1109/TMAG.2019.2897024

    Article  Google Scholar 

  24. Sun, W., Li, Q., Sun, L., Zhu, L., Li, L.: Electromagnetic analysis on novel rotor-segmented axial-field SRM based on dynamic magnetic equivalent circuit. IEEE Trans. Magn. 55(6), 1 (2019). https://doi.org/10.1109/TMAG.2019.2901002

    Article  Google Scholar 

  25. Krämer, C., Kugi, A., Kemmetmüller, W.: Modeling of a permanent magnet linear synchronous motor using magnetic equivalent circuits. Mechatronics 76, 102558 (2021). https://doi.org/10.1016/j.mechatronics.2021.102558

    Article  Google Scholar 

  26. Noh, M., Park, Y.W.: Topology selection and design optimization for magnetostrictive inertial actuators. J. Appl. Phys. 111(3), 342 (2012). https://doi.org/10.1063/1.3673431

    Article  Google Scholar 

  27. Zhang, H., Zhang, T., Jiang, C.: Design of a uniform bias magnetic field for giant magnetostrictive actuators applying triple-ring magnets. Smart Mater. Struct. 22(11), 5009 (2013). https://doi.org/10.1088/0964-1726/22/11/115009

    Article  Google Scholar 

  28. Zhu, Y., Yang, X., Wereley, N.M.: Research on hysteresis loop considering the prestress effect and electrical input dynamics for a giant magnetostrictive actuator. Smart Mater. Struct. 25(8), 085030 (2016). https://doi.org/10.1088/0964-1726/25/8/085030

    Article  Google Scholar 

  29. Jiles, D., Atherton, D.: Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61(1), 48 (1986). https://doi.org/10.1016/0304-8853(86)90066-1

    Article  Google Scholar 

  30. Niu, M., Yang, B., Yang, Y., Meng, G.: Modeling and optimization of magnetostrictive actuator amplified by compliant mechanism. Smart Mater. Struct. 26(9), 095029 (2017). https://doi.org/10.1088/1361-665x/aa7a83

    Article  Google Scholar 

  31. Zhu, Y., Yang, X., Wereley, N.M.: Theoretical and experimental investigations of a magnetostrictive electro-hydrostatic actuator. Smart Mater. Struct. (2018). https://doi.org/10.1088/1361-665x/aad071

    Article  Google Scholar 

  32. Liu, Y., Gao, X., Li, Y.: Giant magnetostrictive actuator nonlinear dynamic Jiles-Atherton model. Sens. Actuators A 250, 7 (2016). https://doi.org/10.1016/j.sna.2016.09.009

    Article  Google Scholar 

  33. Ling, M., Zhang, X.: Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads. Mech. Mach. Theory 160, 104283 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104283

    Article  Google Scholar 

  34. Shao, Y., Xu, M., Shao, S., Song, S.: Effective dynamical model for piezoelectric stick-slip actuators in bi-directional motion. Mech. Syst. Signal Process. 145, 106964 (2020). https://doi.org/10.1016/j.ymssp.2020.106964

    Article  Google Scholar 

  35. Gu, G.Y., Li, Z., Zhu, L.M., Su, C.Y.: A comprehensive dynamic modeling approach for giant magnetostrictive material actuators. Smart Mater. Struct. 22(12), 125005 (2013). https://doi.org/10.1088/0964-1726/22/12/125005

  36. Li, Z., Zhang, X., Gu, G.Y., Chen, X., Su, C.Y.: A comprehensive dynamic model for magnetostrictive actuators considering different input frequencies with mechanical loads. IEEE Trans. Industr. Inf. 12(3), 980 (2016). https://doi.org/10.1109/TII.2016.2543027

  37. Delaat, J.C., Breisacher, K.J., Saus, J.R., Paxson, D.E.: Active combustion control for aircraft gas turbine engines. https://doi.org/10.2514/6.2000-3500. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA, August, (2000)

  38. Panduranga, M.K., Xiao, Z., Schneider, J.D., Lee, T., Klewe, C., Chopdekar, R., Shafer, P., N’Diaye, A.T., Arenholz, E., Candler, R.N., Carman, G.P.: Single magnetic domain Terfenol-D microstructures with passivating oxide layer. J. Magn. Magn. Mater. 528, 167798 (2021). https://doi.org/10.1016/j.jmmm.2021.167798

    Article  Google Scholar 

  39. Sun, L., Zheng, X.: Numerical simulation on coupling behavior of Terfenol-D rods. Int. J. Solids Struct. 43(6), 1613 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.085

    Article  MATH  Google Scholar 

  40. Chopra, I., Sirohi, J.: Smart Structures Theory, vol. 35. Cambridge University Press, Cambridge (2013). https://doi.org/10.2514/1.J053653

    Book  Google Scholar 

  41. Wang, X., Wu, H., Yang, B.: Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform. Mech. Syst. Signal Process. 139, 106606 (2020). https://doi.org/10.1016/j.ymssp.2019.106606

    Article  Google Scholar 

  42. Sun, X., Yang, B., Hu, W., Bai, Z.: Simultaneous precision positioning and vibration control for on-orbit optical payloads: an integrated actuator development and analysis. J. Vib. Eng. Technol. 9(4), 507 (2021). https://doi.org/10.1007/s42417-020-00244-z

    Article  Google Scholar 

  43. Zhu, Y., Li, Y.: A hysteresis nonlinear model of giant magnetostrictive transducer. J. Intell. Mater. Syst. Struct. 26(16), 2242 (2015). https://doi.org/10.1177/1045389X14551434

    Article  Google Scholar 

  44. Huang, M.: Multi-degree of freedom vibration theory and engineering application. Adv. Mater. Res. 250–253, 2473 (2011). https://doi.org/10.4028/www.scientific.net/AMR.250-253.2473

    Article  Google Scholar 

  45. Scheidler, J.J., Asnani, V.M.: Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control. Smart Mater. Struct. 26(3), 035057 (2017). https://doi.org/10.1088/1361-665X/aa5c48

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51975275), the Primary Research & Development Plan of Jiangsu Province (Grant No. BE2021034), the National Science Foundation of Jiangsu Province of China (Grant No. BK20210294) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_0195). (Corresponding authors: Yuchuan Zhu and Jie Ling).

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51975275), the Primary Research & Development Plan of Jiangsu Province (Grant No. BE2021034), the National Science Foundation of Jiangsu Province of China (Grant No. BK20210294), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX21_0195).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Long Chen]. The first draft of the manuscript was written by [Long Chen], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuchuan Zhu or Jie Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhu, Y., Ling, J. et al. Theoretical modeling and experimental evaluation of a magnetostrictive actuator with radial-nested stacked configuration. Nonlinear Dyn 109, 1277–1293 (2022). https://doi.org/10.1007/s11071-022-07494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07494-4

Keywords

Navigation