Skip to main content
Log in

Nonlinear dynamics of dry friction oscillator subjected to combined harmonic and random excitations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a nonlinear single degree freedom oscillator on a moving belt subjected to combined harmonic and random excitations is numerically investigated. The dynamics is described by differential equations with discontinuities due to dry friction between the mass and the belt. The discontinuous oscillator is modelled as a Filippov system. Discontinuity induced bifurcations such as the adding sliding bifurcations due to harmonic excitation and stochastic bifurcations like the P and D bifurcations are investigated by numerically integrating the equations of motion using an adaptive time stepping method. A bisection approach is used to accurately determine the discontinuity point, and a Brownian tree approach is used to follow the correct Brownian path. The associated Fokker–Planck (FP) equation is solved by the finite element method. The largest Lyapunov exponent is computed by using the Müller jump matrix and the Wedig algorithm. The effects of the system parameters on the dynamics of the system are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability

The dataset in Sect. 6 was generated using Matlab scripts. The Matlab codes developed for this work are available from the corresponding author on reasonable request.

References

  1. Awrejcewicz, J.: Chaos in simple mechanical systems with friction. J. Sound Vib. 109(1), 178–180 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Article  Google Scholar 

  3. di Bernardo, M., Kowalczyk, P., Nordmark, A.: Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Phys. D 170(3), 175–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dieci, L., Lopez, L.: Fundamental matrix solutions of piecewise smooth differential systems. Math. Comput. Simul. 81, 932–953 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  Google Scholar 

  6. Gaines, J., Lyons, T.: Variable step size control in the numerical solution of stochastic differential equations. SIAM J. Appl. Math. 57, 1455–1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, Q., Yue, X., Chi, H.: Stochastic response and bifurcations of a dry friction oscillator with periodic excitation based on a modified short-time gaussian approximation scheme. Nonlinear Dyn. 96, 2001–2011 (2019)

    Article  MATH  Google Scholar 

  8. Hartog, J.: Forced vibrations with combined viscous and coulomb damping. London, Edinburgh Dublin Philos. Mag. J. Sci. 9(59), 801–817 (1930)

    Article  MATH  Google Scholar 

  9. Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and friction. Chaos Solitons Fractals 8(4), 535–558 (1997)

    Article  MATH  Google Scholar 

  10. Juel Thomsen, J., Fidlin, A.: Analytical approximations for stick-slip vibration amplitudes. Int. J. Non-Linear Mech. 38(3), 389–403 (2003)

    Article  MATH  Google Scholar 

  11. Devarajan, K., Balaram, B.: Analytical Approximations for Stick-Slip Amplitudes and Frequency of Duffing Oscillator. J. Comput. Nonlinear Dyn. 12(4), 044501 (2017)

    Article  Google Scholar 

  12. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  13. Kumar, P., Narayanan, S.: Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators. Nonlinear Dyn. 102, 927–950 (2020)

    Article  Google Scholar 

  14. Kumar, P., Narayanan, S.: Dynamics of nonlinear oscillators with discontinuous nonlinearities subjected to harmonic and stochastic excitations. J. Inst. Eng. (India) Series C 102, 1321–1363 (2021)

    Article  Google Scholar 

  15. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcation analysis of a duffing oscillator with coulomb friction excited by poisson white noise. Procedia Eng. 144, 998–1006 (2016)

    Article  Google Scholar 

  16. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact Duffing-Van der Pol oscillator. Nonlinear Dyn. 85, 439–52 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kumar, P., Narayanan, S., Gupta, S.: Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers. Int. J. Mech. Sci. 127, 103–117 (2017)

    Article  Google Scholar 

  18. Levy, P.: Monographie des Probabilites Gauthier-Villars. Paris (1948)

  19. Lototsky, S., Mikulevicius, R., Rozovskii, B.L.: Nonlinear filtering revisited: a spectral approach. SIAM J. Control. Optim. 35(2), 435–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Müller, P.: Calculation of Lyapunov exponent for dynamics system with discontinuities. Chaos, Solitons Fractals 5, 1671–1681 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Narayanan, S., Jayaraman, K.: Chaotic vibration in a non-linear oscillator with coulomb damping. J. Sound Vib. 146(1), 17–31 (1991)

    Article  Google Scholar 

  22. Narayanan, S., Kumar, P.: Numerical solutions of Fokker–Planck equation of nonlinear systems subjected to random and harmonic excitations. Probab. Eng. Mech. 27(1), 35–46 (2012)

    Article  Google Scholar 

  23. Oseledec, V.I.: A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  24. Piiroinen, P., Kuznetsov, Y.: An event driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. 34, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Santhosh, B., Padmanabhan, C., Narayanan, S.: Numeric-analytic solutions of the smooth and discontinuous oscillator. Int. J. Mech. Sci. 84, 102–119 (2014)

  26. Shampine, L.F., Thompson, S.: Event location for ordinary differential equations. Comput. Math. Appl. 39, 43–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shang, Z., Jiang, J., Hong, L.: The global responses characteristics of a rotor/stator rubbing system with dry friction effects. J. Sound Vib. 330, 2150–2160 (2011)

    Article  Google Scholar 

  28. Shaw, S.W., Holmes, P.J.: A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 50, 849–857 (1983)

    Article  MATH  Google Scholar 

  29. Sotiropoulos, V., Kaznessis, Y.N.: An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept. J. Chem. Phys. 128(1), 014103 (2008)

    Article  Google Scholar 

  30. Stoyanov, M.K., Gunzburger, M.D., Burkardt, J.V.: Pink noise, \(1/ f ^\alpha \) noise, and their effect on solutions of differential equations. Int. J. Uncertain. Quantif. 1, 257–278 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Su, M., Xu, W., Yang, G.: Stochastic response and stability of system with friction and a rigid barrier. Mech. Syst. Signal Process. 132, 748–761 (2019)

    Article  Google Scholar 

  32. Utkin, V.I.: Sliding Modes in Control Optimization. Springer-Verlag, Berlin (1992)

    Book  MATH  Google Scholar 

  33. Wedig, W.: Dynamic stability of beams under axial forces-Lyapunov exponents for general fluctuating loads. In: W. Kr-ig (ed.) Proceedings Eurodyn’90, Conference on Structural Dynamics, vol. 1, pp. 57–64 (1990)

  34. Wei, S.T., Pierre, C.: Effects of dry friction damping on the occurrence of localized forced vibration in nearly cyclic structures. J. Sound Vib. 129, 397–416 (1989)

    Article  Google Scholar 

  35. Wiercigroch, M.: Vibro-impact responses of capsule system with various friction models. Chaos, Solitons Fractals 11, 2429–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiercigroch, M., Krivtsov, A.M.: Frictional chatter in orthogonal metal cutting. Philos. Trans. R. Soc. A. 359, 713–738 (2001)

    Article  MATH  Google Scholar 

  37. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A., Kurths, J.: Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81, 011106–6 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This is to acknowledge that this work was originally presented online in the 16th International conference of Dynamical Systems-Theory and Applications (DSTA-2021), 6–9 December 2021 and was recommended by the DSTA committee for publication in post-DSTA issue of Journal of Nonlinear Dynamics.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Narayanan, S. Nonlinear dynamics of dry friction oscillator subjected to combined harmonic and random excitations. Nonlinear Dyn 109, 755–778 (2022). https://doi.org/10.1007/s11071-022-07483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07483-7

Keywords

Navigation