Skip to main content
Log in

Input-to-state stability of hybrid stochastic systems with unbounded delays and impulsive effects

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate input-to-state stability (ISS) problem for a general model of hybrid stochastic systems with unbounded delays and impulsive effects, in which stochastic disturbances involve white noise and Markov chain. Firstly, we establish a novel differential inequality with unbounded delays and variable inputs, which extends and improves some existing results. Then, by using the obtained inequality, the sufficient conditions are derived to determine ISS properties on impulsive robustness and impulsive stabilization for the impulsive stochastic systems with unbounded delays. The results not only show that the ISS properties still remain under certain impulsive perturbations for some continuous stable systems, but also indicate that an unstable system can be successfully stabilized to be input-to-state stable by impulses even if the corresponding continuous system is unstable. The obtained criteria are applied to study the ISS problems for impulsive stochastic neural networks and the systems of energy-storing electrical circuit. Finally, two numerical examples and their simulations are given to illustrate the validity of theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34, 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability property. Syst. Control Lett. 24, 351–360 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sontag, E.D.: Further facts about input to state stabilization. IEEE Trans. Autom. Control 35, 473–476 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, B., Hill, D.: Input-to-state stability for discrete time-delay systems via the Razumikhin technique. Syst. Control Lett. 58, 567–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haykin, S.: Neural networks. Prentice-Hall, NJ (1994)

    MATH  Google Scholar 

  7. Mao, X.R.: Stability of stochastic differential equations with Markovian switching. Stoch. Processes Appl. 79, 45–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tsinias, J.: Stochastic input-to-state stability and applications to global feedback stabilization. Int. J. Control 71, 907–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, L., Mao, X.: On input-to-state stability of stochastic retarded systems with markovian switching. IEEE Trans. Autom. Control 54, 1898–1902 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, M., Liu, L., Deng, F.: Input-to-state stability of switched stochastic delayed systems with lévy noise. J. Franklin Inst. 355, 314–331 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, M., Zhu, Q.: New criteria of input-to-state stability for nonlinear switched stochastic delayed systems with asynchronous switching. Syst. Control Lett. 129, 43–50 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yeganefar, N., Pepe, P., Dambrine, M.: Input-to-state stability of time-delay systems: a link with exponential stability. IEEE Trans. Autom. Control 53, 1526–1531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, Y.E., Sun, X.M., Shi, P., Zhao, J.: Input-to-state stability of switched nonlinear systems with time delays under asynchronous switching. IEEE Trans. Cybern. 43, 2261–2265 (2013)

    Article  Google Scholar 

  14. Pepe, P., Karafyllis, I., Jiang, Z.P.: Lyapunov–Krasovskii characterization of the input-to-state stability for neutral systems in Hale’s form. Syst. Control Lett. 102, 48–56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mironchenko, A., Wirth, F.: Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans. Autom. Control 63, 1692–1707 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lakshmikantham, V., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989)

    Book  MATH  Google Scholar 

  17. Liu, B., Marquez, H.J.: Quasi-exponential input-to-state stability for discrete-time impulsive hybrid systems. Int. J. Control 80, 540–554 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, Z., Hong, Y., Jiang, Z.P.: Input-to-state stability of hybrid switched systems with impulsive effects. In: 2008 7th World Congress on Intelligent Control and Automation, pp. 7172–7176 (2008)

  19. Hespanha, J.P., Liberzon, D., Teel, A.R.: Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44, 2735–2744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dashkovskiy, S., Mironchenko, A.: Input-to-state stability of nonlinear impulsive systems. SIAM J. Control Optim. 51, 1962–1987 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W.H., Zheng, W.X.: Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays. Automatica 45, 1481–1488 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J., Liu, X., Xie, W.C.: Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica 47, 899–908 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, X., Zhang, X., Song, S.: Effect of delayed impulses on input-to-state stability of nonlinear systems. Automatica 76, 378–382 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peng, S., Deng, F.: New criteria on \(p\) th moment input-to-state stability of impulsive stochastic delayed differential systems. IEEE Trans. Autom. Control 62, 3573–3579 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ren, W., Xiong, J.: Vector Lyapunov function based input-to-state stability of stochastic impulsive switched time-delay systems. IEEE Trans. Autom. Control 64, 654–669 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Sanchez, E.N., Perez, J.P.: Input-to-state stability (ISS) analysis for dynamic neural networks. IEEE Trans. Circ. Syst. I: Fundam. Theory Appli. 46, 1395–1398 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ahn, C.K.: Passive learning and input-to-state stability of switched hopfield neural networks with time-delay. Inf. Sci. 180, 4582–4594 (2010)

    Article  MATH  Google Scholar 

  28. Ahn, C.K.: Some new results on stability of Takagi–Sugeno fuzzy hopfield neural networks. Fuzzy Set Syst. 179, 100–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, S., Shen, Y.: Two algebraic criteria for input-to-state stability of recurrent neural networks with time-varying delays. Neural Comput. Appl. 22, 1163–1169 (2013)

    Article  Google Scholar 

  30. Zhu, Q., Cao, J., Rakkiyappan, R.: Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn. 79, 1085–1098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, W., Teng, L., Xu, D.: Mean-square exponentially input-to-state stability of stochastic Cohen–Grossberg neural networks with time-varying delays. Neurocomputing 153, 54–61 (2015)

    Article  Google Scholar 

  32. Li, Z., Lei, L., Zhu, Q.: Mean-square exponential input-to-state stability of delayed Cohen–Grossberg neural networks with Markovian switching based on vector Lyapunov functions. Neural Netw. 84, 39–46 (2016)

    Article  MATH  Google Scholar 

  33. Liu, L., Cao, J., Qian, C.: \(P\)th moment exponential input-to-state stability of delayed recurrent neural networks with Markovian switching via vector Lyapunov function. IEEE Trans. Neural Netw. Learn. Syst. 29, 3152–3163 (2017)

    Google Scholar 

  34. Liu, L., He, X., Wu, A.: \(P\)th moment exponential input-to-state stability of non-autonomous delayed Cohen–Grossberg neural networks with Markovian switching. Neurocomputing 349, 44–51 (2019)

    Article  Google Scholar 

  35. Xu, G., Bao, H.: Further results on mean-square exponential input-to-state stability of time-varying delayed BAM neural networks with Markovian switching. Neurocomputing 376, 191–201 (2020)

  36. Yang, Z., Zhou, W., Huang, T.: Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays. Cogn. Neurodyn. 8, 47–54 (2014)

    Article  Google Scholar 

  37. Li, J., Zhou, W., Yang, Z.: State estimation and input-to-state stability of impulsive stochastic BAM neural networks with mixed delays. Neurocomputing 227, 37–45 (2017)

    Article  Google Scholar 

  38. Yang, Z., Zhou, W., Huang, T.: Input-to-state stability of delayed reaction-diffusion neural networks with impulsive effects. Neurocomputing 333, 261–272 (2019)

    Article  Google Scholar 

  39. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  40. Yang, Z., Xu, D., Xiang, L.: Exponential \(p\)-stability of impulsive stochastic differential equations with delays. Phys. Lett. A 359, 129–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, L., Dai, Z., Hu, H.: Almost sure and moment asymptotic boundedness of stochastic delay differential systems. Appl. Math. Comput. 361, 157–168 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Li, H., Li, C., Wei, Z., Jing, X.: Global dissipativity of inertial neural networks with proportional delay via new generalized Halanay inequalities. Neural Process. Lett. 6, 1–19 (2018)

    Article  Google Scholar 

  43. Liu, L.: New criteria on exponential stability for stochastic delay differential systems based on vector Lyapunov function. IEEE Trans. Syst. Man Cybern. Syst. 47, 2985–2993 (2016)

    Article  Google Scholar 

  44. Chen, T., Wang, L.: Global \(\mu \)-stability of delayed neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. 18, 1836–1840 (2007)

    Article  Google Scholar 

  45. Mao, X., Matasov, A., Piunovskiy, A.B.: Stochastic differential delay equations with Markovian switching. Bernoulli 6, 73–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chen, G., Wei, F., Wang, W.: Finite-time stabilization for stochastic interval systems with time delay and application to energy-storing electrical circuits. Electronics 8(2), 175 (2019)

    Article  Google Scholar 

  47. Zhu, S., Chen, G., Yang Y.: Finite-time passive control for interval energy-storing electrical circuit model with time-delay and Markov switching. In: 2018 Chinese Control And Decision Conference (CCDC) (2018)

  48. Liu, B., Dou, C., Hill, D.: Robust exponential input-to-state stability of impulsive systems with an application in micro-grids. Syst. Control Lett. 65(1), 64–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 11971081, 11971076, the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant No. KJZD-M202000502, the Program of Chongqing Graduate Research and Innovation Project under Grant Nos. CYS19290, CYS20242. The authors are also very thankful to anonymous reviewers for their positive advice and helpful suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Theorem 4.1

Proof

Let \(V_i(x(t),r)=\zeta ^p_i(r)|x_i(t)|^p\), \(V(x(t),r)=(V_1(x(t),r)\), \(V_2(x(t),r),\cdots ,V_n(x(t),r))^T\), where \(x(t)=(x_1(t),x_2(t),\cdots ,x_n(t))^T\) is the solution of system (1) with the initial condition (2). We have

$$\begin{aligned}&\frac{\partial V_i(x(t),r)}{\partial x_i}=p\zeta ^p_i(r)|x_i(t)|^{p-1}sgn(x_i)\\&\qquad \qquad =p\zeta ^p_i(r)|x_i(t)|^{p-2}x_i(t),\\&\frac{\partial ^2 V_i(x(t),r)}{\partial x^2_i}=p(p-1)\zeta ^p_i(r)|x_i(t)|^{p-2}, \end{aligned}$$

where \(sgn(\cdot )\) is the sign function. Then, by generalized \(It{\hat{o}}\) formula, we have

$$\begin{aligned} {\mathscr {L}}V_i(x(t),r)= & {} p\zeta ^p_i(r)|x_i(t)|^{p-2}x_i(t)\\&\bigg [-\alpha _i(t,r)x_i(t)+\sum _{j=1}^na_{ij}(t,r)f_j(x_j(t)) \\&+\sum _{j=1}^nb_{ij}(t,r)g_j(x_j(t-\tau _{ij}(t))\\&+u_i(t)\bigg ]+\frac{1}{2}p(p-1)\zeta ^p_i(r)|x_i(t)|^{p-2} \\&\sum _{j=1} ^nh_{ij}^2(x_j(t),x_j(t-\tau _{ij}(t),r)\\&+\sum _{l=1}^m\gamma _{rl}\zeta ^p_i(l)|x_i(t)|^p\\\le & {} -p\alpha _i(t,r)\zeta ^p_i(r)|x_i(t)|^p\\&+p\sum _{j=1}^n\zeta ^p_i(r)|x_i(t)|^{p-1}|a_{ij}(t,r)||f_j(x_j(t))| \\&+p\sum _{j=1}^n\zeta ^p_i(r)|x_i(t)|^{p-1}\\&|b_{ij}(t,r)||g_j(x_j(t-\tau _{ij}(t))| \\&+\frac{1}{2}p(p-1)\sum _{j=1}^n\zeta ^p_i(r)|x_i(t)|^{p-2}\\&h^2_{ij}(x_j(t), x_j(t-\tau _{ij}(t))\\&+p\zeta ^p_i(r)|x_i(t)|^{p-1}u_i(t)\\&+\sum _{l=1}^m\gamma _{rl} \zeta ^p_i(l)|x_i(t)|^p\\\le & {} -p\alpha _i(t,r)\zeta ^p_i(r)|x_i(t)|^p\\&+p\sum _{j=1}^n|a_{ij}(t,r)\\&|M_j \zeta ^p_i(r)|x_i(t)|^{p-1} |x_j(t)| \\&+p\sum _{j=1}^n|b_{ij}(t,r)|L_j\zeta ^p_i(r)|x_i(t)|^{p-1}\\&|x_j(t-\tau _{ij}(t))|\\&+\frac{1}{2}p(p-1)\zeta ^p_i(r) \\&|x_i(t)|^{p-2}\sum _{j=1}^n(\mu _{ij}(r)x_j^2(t)\\&+\nu _{ij}(r)x_j^2(t-\tau _{ij}(t))) +(p-1)\zeta ^p_i(r)|x_i(t)|^{p} \\&+\zeta ^p_i(r)|u_i(t)|^p+\sum _{l=1}^m\gamma _{rl}\zeta ^p_i(l)|x_i(t)|^p\\\le & {} -p\alpha _i(t,r)\zeta ^p_i(r)|x_i(t)|^p+p\frac{\zeta _i(r)}{\zeta _j(r)}\\&\sum _{j=1}^n|a_{ij}(t,r)|M_j \zeta ^{p-1}_i(r)|x_i(t)|^{p-1}\\&\zeta _j(r) |x_j(t)|+p\sum _{j=1}^n|b_{ij}(t,r)|L_j\\&\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )}\zeta ^{p-1}_i(r)|x_i(t)|^{p-1} \\&\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )|x_j(t-\tau _{ij}(t))|\\&+\frac{1}{2}p(p-1)\\&\frac{\zeta ^{2}_i(r)}{\zeta ^{2}_j(r)}\zeta ^{p-2}_i(r)|x_i(t)|^{p-2} \\&\sum _{j=1}^n\mu _{ij}(r)\zeta ^{2}_j(r)|x_j(t)|^2\\+&\frac{1}{2}p(p-1)\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )}\\&\zeta ^{p-2}_i(r)|x_i(t)|^{p-2} \\&\sum _{j=1}^n \nu _{ij}(r) \min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )|x_j(t-\tau _{ij}(t))|^2\\&+(p-1)\zeta ^p_i(r)|x_i(t)|^{p} \\&+\zeta ^p_i(r)|u_i(t)|^p\\&+\sum _{l=1}^m \frac{\zeta ^p_i(l)}{\zeta ^p_i(r)} \gamma _{rl}\zeta ^p_i(r) |x_i(t)|^p\\\le & {} \sum _{j=1}^n\Big [{\hat{P}}_{ij}(t)V^{\frac{1}{p}}_{j}(x(t),r) V^{\frac{p-1}{p}}_{i}(x(t),r)\\&+ {\hat{Q}}_{ij}(t)\min \limits _{\iota \in {\mathbb {M}}}V^{\frac{1}{p}}_{j}(x(t-\tau _{ij}(t)),\iota )\\&V^{\frac{p-1}{p}}_{i}(x(t),r)\\&+{\hat{S}}_{ij}(t)V^{\frac{p-2}{p}}_{j}(x(t),r) V^{\frac{2}{p}}_{i}(x(t),r) +{\hat{T}}_{ij}(t)\\&\min \limits _{\iota \in {\mathbb {M}}}V^{\frac{2}{p}}_{j}(x(t-\tau _{ij}(t)),\iota )\Big ]\\&V^{\frac{p-2}{p}}_{i} (x(t),r)\\&+\max \limits _{r\in {\mathbb {M}}}\{\zeta ^p_i(r)|u_i(t)|^p\}. \end{aligned}$$

On the other hand, when \(t=t_k,\) from (\(A_3\)) and (\(A_5\)) , we get

$$\begin{aligned} V_i(x(t_k^+),l)= & {} \zeta ^p_i({r}) |x_i(t_k^-)+I_{ik}(x(t_k^-))|^p\\\le & {} \zeta ^p_i({r}) [\sum _{j=1}^n d_{ijk}|x_j(t_k^{-})|]^p\\\le & {} \frac{\max \zeta ^p_i({r})}{\min \limits _{\iota \in {\mathbb {M}}} \zeta ^p_j({\iota })} (\sum _{m=1}^n d_{imk })^{p-1}\sum _{j=1}^n d_{ijk} \zeta ^p_j({v}) |x_j(t_k^{-})|^p\\\le & {} \sum _{j=1}^n {\hat{D}}_{ij} V_j(x(t_k^-),l). \end{aligned}$$

It follows from Theorem 3.1 that

$$\begin{aligned} E|x_i(t)|^p\le {\underline{\eta }}^{-1} E\Vert \phi \Vert ^p \frac{\sigma }{\omega (t)}+ \frac{e^\rho \overline{\eta } \sup \limits _{0\le s\le t}|u_i(s)|^p}{{\underline{\eta }}\delta }, t\ge 0, \end{aligned}$$

where \({\underline{\eta }}=\min \limits _{r\in {\mathbb {M}},1\le i\le n} \zeta ^p_i(r), \overline{\eta }=\max \limits _{r\in {\mathbb {M}},1\le i\le n} \zeta ^p_i(r)\). We get

$$\begin{aligned} E|x(t)|^p\le n {\underline{\eta }}^{-1} E\Vert \phi \Vert ^p \frac{\sigma }{\omega (t)}+ \frac{e^\rho \overline{\eta }\Vert u\Vert _\infty ^p}{{\underline{\eta }}\delta }. \end{aligned}$$

This finishes the proof of Theorem 4.1. \(\square \)

Appendix B: Proof of Theorem 4.2

Proof

Let \(W_i(x(t),r)=\zeta ^p_i(r)|x_i(t)|^p\). According to Theorem 4.1, we have

$$\begin{aligned} {\mathscr {L}} W_i(x(t),r)&\le -p\alpha _i(t,r)\zeta ^p_i(r)|x_i(t)|^p\\&+p\sum _{j=1}^n\frac{\zeta _i(r)}{\zeta _j(r)}|a_{ij}(t,r)|M_j \zeta ^{p-1}_i(r)\\&|x_i(t)|^{p-1}\zeta _j(r) |x_j(t)|\\&+p\sum _{j=1}^n|b_{ij}(t,r)|L_j\\&\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )}\zeta ^{p-1}_i(r) \\&|x_i(t)|^{p-1}\\&\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )|x_j (t-\tau _{ij}(t))|\\&+\sum _{j=1}^n\frac{1}{2}p(p-1)\\&\frac{\zeta ^{2}_i(r)}{\zeta ^{2}_j(r)}\zeta ^{p-2}_i(r)|x_i(t)|^{p-2} \mu _{ij}(r)\zeta ^{2}_j(r)x_j^2(t)\\&+ \frac{1}{2}p(p-1)\sum _{j=1}^n\\&\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )}\zeta ^{p-2}_i(r)|x_i(t)|^{p-2} \nu _{ij}(r)\\&\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )x_j^2(t-\tau _{ij}(t))\\&+(p-1)\zeta ^p_i(r)|x_i(t)|^{p}+\zeta ^p_i(r)|u_i(t)|^p\\&+\sum _{l=1}^m\frac{\zeta ^p_i(l)}{\zeta ^p_i(r)}\gamma _{rl}\zeta ^p_i(r) |x_i(t)|^p\\&\le -p\alpha _i(t,r)\zeta ^p_i(r)|x_i(t)|^p\\&+(p-1)\sum _{j=1}^n\frac{\zeta _i(r)}{\zeta _j(r)}|a_{ij}(t,r)| M_j\zeta ^p_i(r)|x_i(t)|^p\\&+\sum _{j=1}^n\frac{\zeta _i(r)}{\zeta _j(r)}|a_{ij}(t,r)| M_j \zeta ^p_j(r)|x_j(t)|^p\\&+(p-1)\sum _{j=1}^n|b_{ij}(t,r)|L_j\\&\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )} \zeta ^p_i(r)|x_i(t)|^p\\&+\sum _{j=1}^n|b_{ij}(t,r)| L_j\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )}\\&\min \limits _{\iota \in {\mathbb {M}}}\zeta ^p_j(\iota )|x_j(t-\tau _{ij}(t))|^p\\&+\frac{(p-1)(p-2)}{2}\sum _{j=1}^n\frac{\zeta ^2_i(r)}{\zeta ^2_j(r)}\mu _{ij}(r) \zeta ^p_i(r)|x_i(t)|^p\\&+(p-1)\sum _{j=1}^n\\&\frac{\zeta ^2_i(r)}{\zeta ^2_j(r)} \mu _{ij}(r)\zeta ^p_j(r)|x_j(t)|^p\\&+\frac{(p-1)(p-2)}{2} \sum _{j=1}^n\nu _{ij}(r)\\&\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )} \zeta ^p_i|x_i(t)|^p\\&+(p-1)\sum _{j=1}^n\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )} \nu _{ij}(r)\min \limits _{\iota \in {\mathbb {M}}}\zeta ^p_j(\iota )|x_j(t-\tau _{ij}(t))|^p\\&+(p-1)\zeta ^p_i(r)|x_i(t)|^{p} +\zeta ^p_i(r)|u_i(t)|^p\\&+\sum _{l=1}^m \frac{\zeta ^p_i(l)}{\zeta ^p_i(r)}\gamma _{rl}\zeta ^p_i(r)|x_i(t)|^p\\&=-[p\alpha _i(t,r)-\sum _{j=1}^n(p-1)\\&(\frac{\zeta _i(r)}{\zeta _j(r)}|a_{ij}(t,r)| M_j+|b_{ij}(t,r)|L_j\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )})\\&-\frac{(p-1)(p-2)}{2}\sum _{j=1}^n\\&(\frac{\zeta ^2_i(r)}{\zeta ^2_j(r)}\mu _{ij}(r) +\nu _{ij}(r)\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )})\\&-a_{ii}(t,r)M_i-(p-1)\mu _{ii} \\&-(p-1)-\sum _{l=1}^m\frac{\zeta ^p_i(l)}{\zeta ^p_i(r)}\gamma _{rl}]\zeta ^p_i(r)|x_i(t)|^p\\&+\sum _{i\ne j,j=1}^n\Big (|a_{ij}(t,r)|L_j +(p-1)\frac{\zeta ^2_i(r)}{\zeta ^2_j(r)} \mu _{ij}(r)\Big )\\&\zeta ^p_j(r)|x_j(t)|^{p}\\&+\sum _{j=1}^n\Big (|b_{ij}(t,r)| L_j\\&\frac{\zeta _i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta _j(\iota )}+(p-1)\\&\frac{\zeta ^2_i(r)}{\min \limits _{\iota \in {\mathbb {M}}}\zeta ^2_j(\iota )} \nu _{ij}(r)\Big )\\&\min \limits _{\iota \in {\mathbb {M}}}\zeta ^p_j(\iota )|x_j(t-\tau _{ij}(t))|^p +\zeta ^p_i(r)|u_i(t)|^p\\&\le \sum _{j=1}^n {\tilde{P}}_{ij}(t) W_j(x(t),r) \\&+\sum _{j=1}^n {\tilde{Q}}_{ij}(t) \min \limits _{\iota \in {\mathbb {M}}}W_j(x(t-\tau _{ij}(t)),\iota )\\&+\max \limits _{\iota \in {\mathbb {M}}}\zeta ^p_i(\iota )|u_i(t)|^p, \end{aligned}$$

where \({\tilde{P}}_{ij}(t), {\tilde{Q}}_{ij}(t)\) are defined by (20) and \(U_i(t)=\max \limits _{r\in {\mathbb {M}}}\{\zeta ^p_i(r)|u_i(t)|^p\}\). On the other hand, when \(t=t_k\), we get

$$\begin{aligned} W_i(x(t_k),l)=\zeta ^p_i({r}) |x_i(t_k)|^p= & {} \zeta ^p_i({r}) |x_i(t_k^-)+I_{ik}(x(t_k^-))|^p\\= & {} \zeta ^p_i({r}) |x_i(t_k^-)+d_{iik}x(t_k^-)|^p\\\le & {} \zeta ^p_i({r}) \gamma |x_i(t_k^{-})|^p\\\le & {} \gamma V_i(x(t_k^-), l). \end{aligned}$$

It follows from Theorem 3.2 that

$$\begin{aligned}&E|x_i(t)|^p \le K\left[ \frac{e^{-\mu (t)}}{\min \limits _{1\le i\le n}z_i}\frac{E\Vert \phi \Vert ^p}{\gamma }\right. \\&\left. \quad +\frac{\max \limits _{\iota \in {\mathbb {M}}}\zeta ^p_i(\iota ) \Vert u\Vert _\infty }{\gamma \inf \limits _{ t\ge 0}-({\tilde{P}}_{ii}(t)z_i+\frac{\sum _{i\ne j,j=1}^n{\tilde{P}}_{ij}(t)+\sum _{j=1}^n{\tilde{Q}}_{ij}(t)}{\gamma }z_j +\frac{\ln \gamma }{\rho }z_i)}\right] , \end{aligned}$$

where \( t\ge 0, K=\frac{z_i\max \limits _{r\in {\mathbb {M}},1\le i\le n} \zeta ^p_i(r)}{\min \limits _{r\in {\mathbb {M}},1\le i\le n} \zeta ^p_i(r)}\). Therefore, we have

$$\begin{aligned}&E|x(t)|^p \le \frac{nKe^{-\mu (t)}}{\min \limits _{1\le i\le n}z_i}\frac{E\Vert \phi \Vert ^p}{\gamma }\\&\quad +\frac{nK\max \limits _{\iota \in {\mathbb {M}}}\zeta ^p_i(\iota ) \Vert u\Vert _\infty }{\gamma \inf \limits _{ t\ge 0}-({\tilde{P}}_{ii}(t)z_i+\frac{\sum _{i\ne j,j=1}^n{\tilde{P}}_{ij}(t)+\sum _{j=1}^n{\tilde{Q}}_{ij}(t)}{\gamma }z_j +\frac{\ln \gamma }{\rho }z_i)}, \end{aligned}$$

where \(t\ge 0\). The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, Z., Huang, C. et al. Input-to-state stability of hybrid stochastic systems with unbounded delays and impulsive effects. Nonlinear Dyn 104, 3753–3770 (2021). https://doi.org/10.1007/s11071-021-06480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06480-6

Keywords

Navigation