Skip to main content
Log in

Dynamics of spatiotemporal modulated damped signals in a nonlinear RLC transmission network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of spatiotemporal modulated damped signals in a nonlinear LC transmission network with dissipative elements are investigated analytically. The complex cubic Ginzburg–Landau (GL) equation governing slowly modulated wave propagation is presented. Considering linear wave propagating in the network, we derive in terms of the propagating frequency the spatial decreasing rate (linear dissipation parameter) and show that its must important contribution comes from the dissipative element of the shunt branch. The modulational instability (MI) criterion of modulated Stokes wave propagating in the network is investigated and the analytical expression of the MI growth rate is derived; we show that in the case of weak dissipation, there are no significant changes for the bandwidth frequency where the network may exhibit MI. Exact and approximative envelope soliton-like solutions of the derived GL equation are presented and used to investigate the dynamics of spatiotemporal modulated damped signals along the network. We show that the solution parameters can be used for managing the evolution of the envelope soliton signals along the network. Our investigation shows that the amplitude decays in both space (cell number n) and time t, while the velocity remains constant when the envelope soliton signal propagates along the dissipative network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443–1483 (1973)

    Article  MathSciNet  Google Scholar 

  2. Hasegawa, A.: Optical Solitons in Fibers, 2nd edn. Springer, Berlin (1989)

    Book  Google Scholar 

  3. Green, P.D., Milovic, D., Lott, D.A., Biswas, A.: Optical solitons with higher order dispersion by semi-inverse variational principle. Prog. Electromag. Res. EMW 102, 337–350 (2010)

    Article  Google Scholar 

  4. Remoissenet, M.: Waves Called Solitons, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  5. Scott, A.C.: Active and Nonlinear Wave Propagation in Electronics. Wiley, New York (1970)

    Google Scholar 

  6. Liu, W.M., Kengne, E.: Schrödinger Equations in Nonlinear Systems, 1st edn. Springer, Berlin (2019). https://doi.org/10.1007/978-981-13-6581-2

  7. Kengne, E., Lakhssassi, A., Liu, W.M.: Nonlinear Schamel–Korteweg deVries equation for a modified Noguchi nonlinear electric transmission network: analytical circuit modeling. Chaos Solitons Fract. 140, 110229 (2020)

    Article  MathSciNet  Google Scholar 

  8. Lonngren, K.E.: Soliton in Action ed K E Lonngren and A C Scott. Academic, New York (1978)

    Google Scholar 

  9. Hirota, R., Suzuki, K.: Studies on lattice solitons by using electrical networks. J. Phys. Soc. Jpn. 28, 1366–1367 (1970)

    Article  Google Scholar 

  10. Hirota, R., Suzuki, K.: Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. Proc. IEEE 61, 1483–1491 (1973)

    Article  Google Scholar 

  11. Sekulic, D.L., Sataric, M.V., Zivanov, M.B., Bajic, J.S.: Soliton-like pulses along electrical nonlinear transmission line. Elect. Elect. Eng. 5, 53–58 (2012)

    Google Scholar 

  12. Afshari, E., Hajimiri, A.: Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid State Circ. 40, 744–752 (2005)

    Article  Google Scholar 

  13. Koon, K.T.V., Leon, J., Marquie, P., Tchofo, D.P.: Cutoff solitons and bistability of the discrete inductance-capacitance electrical line: theory and experiments. Phys. Rev. E 75, 066604 (2007)

    Article  Google Scholar 

  14. Kengne, E., Vaillancourt, R.: Propagation of solitary waves on lossy nonlinear transmission lines. Int. J. Mod. Phys. B 23, 1–19 (2009)

    Article  Google Scholar 

  15. Giannini, J.A., Joseph, R.I.: The propagation of bright and dark solitons in lossy optical fibers. IEEE J. Quant. Electron. 26, 2109–2114 (1990)

    Article  Google Scholar 

  16. Yamigno, S.D.: Propagation of dark solitary waves in the Korteveg-Devries-Burgers equation describing the nonlinear RLC transmission. J. Mod. Phys. 5, 394 (2014)

  17. Kengne, E., Lakhssassi, A., Liu, W.M.: Modeling of matter-wave solitons in a nonlinear inductor-capacitor network through a Gross–Pitaevskii equation with time-dependent linear potential. Phys. Rev. E 96, 022221 (2017)

    Article  MathSciNet  Google Scholar 

  18. Marquié, P., Bilbault, J.M., Remoissenet, M.: Nonlinear Schrödinger models and modulational instability in real electrical lattices. Phys. D 87, 371–374 (1995)

    Article  Google Scholar 

  19. Marquié, P., Bilbault, J.M., Remoissenet, M.: Generation of envelope and hole solitons in an experimental transmission line. Phys. Rev. E 49, 828 (1994)

    Article  Google Scholar 

  20. Yemélé, D., Talla, P.K., Kofané, T.C.: Dynamics of modulated waves in a nonlinear discrete LC transmission line: dissipative effects. J. Phys. D Appl. Phys. 36, 1429–1437 (2003)

    Article  Google Scholar 

  21. Kengne, E., Liu, W.M.: Transmission of rogue wave signals through a modified Noguchi electrical transmission network. Phys. Rev. E 96, 062222 (2019). https://doi.org/10.1103/PhysRevE.99.062222

    Article  Google Scholar 

  22. Kengne, E., Liu, W.M.: Engineering rogue waves with quintic nonlinearity and nonlinear dispersion effects in a modified Nogochi nonlinear electric transmission network. Phys. Rev. E 102, 012203 (2020)

    Article  Google Scholar 

  23. Mostafa, S.I.: Analytical study for the ability of nonlinear transmission lines to generate solitons. Chaos Solitons Fract. 39, 2125–2132 (2009)

    Article  Google Scholar 

  24. Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave modulation. I. J. Math. Phys. 10, 1369–1372 (1969)

    Article  MathSciNet  Google Scholar 

  25. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kengne, E., Chui, S.T., Liu, W.M.: Modulational instability criteria for coupled nonlinear transmission lines with dispersive element. Phys. Rev. E 74, 036614 (2006)

    Article  Google Scholar 

  27. Kengne, E., Lakhssassi, A., Liu, W.M., Vaillancourt, R.: Phase engineering, modulational instability, and solitons of Gross–Pitaevskii-type equations in 1+1 dimensions. Phys. Rev. E 87, 022914 (2013)

    Article  Google Scholar 

  28. Kengne, E., Liu, W.M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    Article  MathSciNet  Google Scholar 

  29. Lange, C., Newell, A.C.: A stability criterion for envelope equations. SIAM J. Appl. Math. 27, 441–456 (1974)

    Article  MathSciNet  Google Scholar 

  30. Pelap, F.B., Faye, M.M.: A modified stability criterion for envelope equations. Phys. Scr. 71, 238 (2005)

    Article  Google Scholar 

  31. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27, 417 (1967)

    Article  Google Scholar 

  32. Amiranashvili, S., Tobisch, E.: Extended criterion for the modulation instability. New J. Phys. 21, 033029 (2019)

    Article  MathSciNet  Google Scholar 

  33. Sajjadi, S.G.: A note on Benjamin–Feir instability for water waves. Adv. Appl. Fluid Mech. 17, 17 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D 238, 540 (2009)

    Article  MathSciNet  Google Scholar 

  35. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  36. KivsharY, S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Kengne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The first author, E. Kengne dedicates this work to his children, Kengneson Delma Djomo, Kengneson Weierstrass Owan Wambo, and Kengneson Cris-Carelle Djike, all living at Gatineau-Quebec, Canada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, E., Nkouankam, E.B.N. & Lakhssassi, A. Dynamics of spatiotemporal modulated damped signals in a nonlinear RLC transmission network. Nonlinear Dyn 104, 4181–4201 (2021). https://doi.org/10.1007/s11071-021-06466-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06466-4

Keywords

Navigation