Skip to main content
Log in

Chaotic time series prediction using echo state network based on selective opposition grey wolf optimizer

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaos prediction of nonlinear system is of great significance for proposing control strategies early. On the other hand, echo state network (ESN) as an artificial neural recursive network is widely used in time series prediction, while it has significant disadvantages due to the random input weight matrix. This work proposes a chaos prediction model based on ESN optimized by the selective opposition grey wolf optimizer (SOGWO). Firstly, the input weight matrix of ESN is restructured to express the position of gray wolf optimizer (GWO). Secondly, the selective opposition strategy is introduced into the GWO to enhance the exploration and exploitation capability. Thirdly, the optimal network is achieved by iteratively updating the position of SOGWO where the input weight is replaced by optimal search agent. Finally, taking two typical chaotic time series of Mackey–Glass and Lorenz as the objects, the effectiveness of the proposed SOGWO-ESN is verified by numerical simulation. The experimental results of SOGWO-ESN are compared with those of the traditional echo state network, the network model optimized by the particle swarm optimization (PSO) and the traditional gray wolf optimizer. The results imply that the proposed SOGWO-ESN has better prediction performance and is able to accurately predict a much longer period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang, X., Chen, X., Chi, M., Chen, J.: On Hopf bifurcation and control for a delay systems. Appl. Math. Comput. 370, 124906 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Jiang, X., Chen, X., Huang, T., Yan, H.: Bifurcation and control for a predator-prey system with two delays. IEEE Trans. Circuits Syst. II 68(1), 376–380 (2020)

    Google Scholar 

  3. Yin, W., Qin, W., Jiang, X., Chen, X., Chi, M.: Stability and Neimark-Sacker bifurcation of leslie-gower predator-prey system with two delays. In Proceedings of the 39th Chinese Control Conference, Shenyang, China, pp. 328–332 (2020)

  4. Jiang, X., Zhan, X., Jiang, B.: Stability and Neimark-Sacker bifurcation analysis for a discrete single genetic negative feedback autoregulatory system with delay. Nonlinear Dyn. 76(2), 1031–1039 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Munir, F.A., Zia, M., Mahmood, H.: Designing multi-dimensional logistic map with fixed-point finite precision. Nonlinear Dyn. 97(12), 2147–2158 (2019)

    MATH  Google Scholar 

  6. Jiang, X., Chen, X., Huang, T., Yan, H.: Output tracking control of single-input-multioutput systems over an erasure channel. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3001592

    Article  Google Scholar 

  7. Zeebe, R.E., Lourens, L.J.: Solar System chaos and the Paleocene-Eocene boundary age constrained by geology and astronomy. Science 365(6456), 926–929 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Lee, R.S.T.: Chaotic Interval Type-2 Fuzzy Neuro-oscillatory Network (CIT2-FNON) for Worldwide 129 Financial Products Prediction. Int. J. Fuzzy Syst. 21, 2223–2244 (2019)

    Google Scholar 

  9. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A Stat. Mech. Appl. 519, 127–139 (2019)

    Google Scholar 

  10. Zhang, Y., Sun, H., Guo, Y.: Wind power prediction based on pso-svr and grey combination model. IEEE Access. 7, 136254–136267 (2019)

    Google Scholar 

  11. Sun, N., Zhou, J., Chen, L., Jia, B., Tayyab, M., Peng, T.: An adaptive dynamic short-term wind speed forecasting model using secondary decomposition and an improved regularized extreme learning machine. Energy 165, 939–957 (2018)

    Google Scholar 

  12. Tan, H., Wu, Y., Shen, B., Jin, P.J., Ran, B.: Short-Term Traffic Prediction Based on Dynamic Tensor Completion. IEEE Trans. Intell. Transp. Syst. 17(8), 2123–2133 (2016)

    Google Scholar 

  13. Chen, W., Shang, Z., Chen, Y., Chaeikar, S.S.: A novel hybrid network traffic prediction approach based on support vector machines. J. Comput. Networks Commun. 2019(2), 1–10 (2019)

    Google Scholar 

  14. Zhang, X., Lv, M., Chen, H., et al.: Chaotic characteristics analysis of the sintering process system with unknown dynamic functions based on phase space reconstruction and chaotic invariables. Nonlinear Dyn 93, 395–412 (2018)

    MATH  Google Scholar 

  15. Li, M.W., Geng, J., Han, D.F., Zheng, T.J.: Ship motion prediction using dynamic seasonal RvSVR with phase space reconstruction and the chaos adaptive efficient FOA. Neurocomputing 174, 661–680 (2016)

    Google Scholar 

  16. Lymburn, T., Khor, A., Stemler, T., Corrêa, D.C., Small, M., Jüngling, T.: Consistency in echo-state networks. Chaos 29(2), 023118 (2019)

    Google Scholar 

  17. Lu, Z., Hunt, B.R., Ott, E.: Attractor reconstruction by machine learning. Chaos 28(6), 061104 (2018)

    MathSciNet  Google Scholar 

  18. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120(2), 024102 (2018)

    Google Scholar 

  19. Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an erratum note. Bonn Ger. Ger. Natl. Res. Center Inf. Technol. GMD Tech. Rep. 148(34), 13 (2001)

    Google Scholar 

  20. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    MATH  Google Scholar 

  21. Weng, T., Yang, H., Gu, C., Zhang, J., Small, M.: Synchronization of chaotic systems and their machine-learning models. Phys. Rev. E. 99(4), 042203 (2019)

    MathSciNet  Google Scholar 

  22. Carroll, T.L.: Using reservoir computers to distinguish chaotic signals. Phys. Rev. E. 98(5), 52209 (2018)

    Google Scholar 

  23. Dutoit, X., Schrauwen, B., Van Campenhout, J., Stroobandt, D., Van Brussel, H., Nuttin, M.: Pruning and regularization in reservoir computing. Neurocomputing 72(7–9), 1534–1546 (2009)

    Google Scholar 

  24. Qiao, J., Li, F., Han, H., Li, W.: Growing echo-state network with multiple subreservoirs. IEEE Trans. Neural Networks Learn. Syst. 28, 391–404 (2017)

    Google Scholar 

  25. Rodan, A., Tiňo, P.: Minimum complexity echo state network. IEEE Trans. Neural Networks. 22(1), 131–144 (2011)

    Google Scholar 

  26. Wang, H., Yan, X.: Improved simple deterministically constructed cycle reservoir network with sensitive iterative pruning algorithm. Neurocomputing 145(18), 353–362 (2014)

    Google Scholar 

  27. Chouikhi, N., Ammar, B., Rokbani, N., Alimi, A.M.: PSO-based analysis of echo state network parameters for time series forecasting. Appl. Soft Comput. J. 55, 211–225 (2017)

    Google Scholar 

  28. Wang, H., Yan, X.: Optimizing the echo state network with a binary particle swarm optimization algorithm. Knowledge-Based Syst. 86, 182–193 (2015)

    Google Scholar 

  29. Xia, Y., Jelfs, B., Van Hulle, M.M., Principe, J.C., Mandic, D.P.: An augmented echo state network for nonlinear adaptive filtering of complex noncircular signals. IEEE Trans. Neural Networks. 22(1), 74–83 (2011)

    Google Scholar 

  30. Jaeger, H., Lukoševičius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky- integrator neurons. Neural Netw. 20(3), 335–352 (2007)

    MATH  Google Scholar 

  31. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    MATH  Google Scholar 

  32. Al-Betar, M.A., Awadallah, M.A., Faris, H., Aljarah, I., Hammouri, A.I.: Natural selection methods for grey wolf optimizer. Expert Syst. Appl. 113, 481–498 (2018)

    Google Scholar 

  33. Liu, J., Sun, T., Luo, Y., Yang, S., Cao, Y., Zhai, J.: Echo state network optimization using binary grey wolf algorithm. Neurocomputing 385, 310–318 (2020)

    Google Scholar 

  34. El-Hoseny, H.M., Abd El-Rahman, W., El-Rabaie, E.S.M., Abd El-Samie, F.E., Faragallah, O.S.: An efficient DT-CWT medical image fusion system based on modified central force optimization and histogram matching. Infrared Phys. Technol. 94, 223–231 (2018)

    Google Scholar 

  35. Daniel, E.: Optimum wavelet-based homomorphic medical image fusion using hybrid genetic-grey wolf optimization algorithm. IEEE Sens. J. 18(16), 6804–6811 (2018)

    Google Scholar 

  36. Kamboj, V.K., Bath, S.K., Dhillon, J.S.: Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer. Neural Comput. Appl. 27, 1301–1316 (2016)

    Google Scholar 

  37. Pradhan, M., Roy, P.K., Pal, T.: Grey wolf optimization applied to economic load dispatch problems. Int. J. Electr. Power Energy Syst. 83, 325–334 (2016)

    Google Scholar 

  38. Mulugeta, M.: Afro-European Conference for Industrial Advancement. 334,1–13 (2015)

  39. Khairuzzaman, A.K.M., Chaudhury, S.: Multilevel thresholding using grey wolf optimizer for image segmentation. Exp. Syst. Appl. 86, 64–76 (2017)

    Google Scholar 

  40. Dhargupta, S., Ghosh, M., Mirjalili, S., Sarkar, R.: Selective opposition based grey wolf optimization. Exp.Syst. Appl. 151, 113389 (2020)

    Google Scholar 

  41. Lukoševičius, M., Jaeger, H., Schrauwen, B.: Reservoir computing trends. KI - Kunstl. Intelligenz. 26, 365–371 (2012)

    Google Scholar 

  42. Yusoff, M.H., Chrol-Cannon, J., Jin, Y.: Modeling neural plasticity in echo state networks for classification and regression. Inf. Sci. (Ny) 364–365, 184–196 (2016)

    Google Scholar 

  43. Yeo, K.: Data-driven reconstruction of nonlinear dynamics from sparse observation. J. Comput. Phys. 395, 671–689 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Google Scholar 

  45. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    MATH  Google Scholar 

  46. Li, X., Ou, Q.: Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn 65, 255–270 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B.R., Girvan, M., Ott, E.: Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model. Chaos 28(4), 041101 (2018)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of PRC under Grant 62062014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Qu Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HC., Wei, DQ. Chaotic time series prediction using echo state network based on selective opposition grey wolf optimizer. Nonlinear Dyn 104, 3925–3935 (2021). https://doi.org/10.1007/s11071-021-06452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06452-w

Keywords

Navigation