Skip to main content
Log in

Chaotic dynamics in a neural network under electromagnetic radiation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a small Hopfield neural network with three neurons is studied, in which one of the three neurons is considered to be exposed to electromagnetic radiation. The effect of electromagnetic radiation is modeled and considered as magnetic flux across membrane of the neuron, which contributes to the formation of membrane potential, and a feedback with a memristive type is used to describe coupling between magnetic flux and membrane potential. With the electromagnetic radiation being considered, the previous steady neural network can present abundant chaotic dynamics. It is found that hidden attractors can be observed in the neural network under different conditions. Moreover, periodic motion and chaotic motion appear intermittently with variations in some system parameters. Particularly, coexistence of periodic attractor, quasiperiodic attractor, and chaotic strange attractor, coexistence of bifurcation modes and transient chaos can be observed. In addition, an electric circuit of the neural network is implemented in Pspice, and the experimental results agree well with the numerical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088 (1984)

    Article  MATH  Google Scholar 

  2. Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)

    Article  Google Scholar 

  3. Axmacher, N., Mormann, F., Fernandez, G., et al.: Memory formation by neuronal synchronization. Brain Res. Rev. 52, 170–182 (2006)

    Article  Google Scholar 

  4. Wang, Z., Fan, H.: Memory retrieval in a neural network with chaotic neurons and dynamic synapses. Lect. Notes Comput. Sci. 3512, 654–660 (2005)

    Article  Google Scholar 

  5. Babloyantz, A.: Brain chaos and computation. Int. J. Neural Syst. 7, 461–471 (1996)

    Article  Google Scholar 

  6. Guevara, M.R., Glass, L., Mackey, M.C., et al.: Chaos in neurobiology. IEEE Trans. Syst. Man Cybern. SMC–13, 790–798 (1983)

    Article  MATH  Google Scholar 

  7. Yang, X.-S., Yuan, Q.: Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69, 232–241 (2005)

    Article  Google Scholar 

  8. Dror, G., Tsodyks, M.: Chaos in neural networks with dynamic synapses. Neurocomputing 32–33, 365–370 (2000)

    Article  Google Scholar 

  9. Huang, W.-Z., Huang, Y.: Chaos of a new class of Hopfield neural networks. Appl. Math. Comput. 206, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, X.S., Huang, Y.: Complex dynamics in simple Hopfield neural networks. Chaos 16, 033114 (2006)

    Article  MATH  Google Scholar 

  11. Huang, Y., Yang, X.-S.: Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing 69, 1787–1795 (2006)

    Article  Google Scholar 

  12. Li, Q., Yang, X.-S., Yang, F.: Hyperchaos in Hopfield-type neural networks. Neurocomputing 67, 275–280 (2005)

    Article  Google Scholar 

  13. Mestl, T., Lemay, C., Glass, L.: Chaos in high-dimensional neural and gene networks. Physica D 98, 33–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Jess Rubio, J.: Stable Kalman filter and neural network for the chaotic systems identification. J. Frankl. Inst. (2017) (Europhys. Lett.) 83, 50008 (2008)

    Google Scholar 

  15. Rubio, J.D.J.: USNFIS: uniform stable neuro fuzzy inference system. Neurocomputing 262, 57–66 (2017)

  16. Wang, Q., Chen, G., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6, e15851 (2011)

    Article  Google Scholar 

  17. Wang, Q., Duan, Z., Perc, M., et al.: Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability. EPL (Europhys. Lett.) 83, 50008 (2008)

    Article  Google Scholar 

  18. Bogaard, A., Parent, J., Zochowski, M., et al.: Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J. Neurosci. (The Official Journal of the Society for Neuroscience) 29, 1677–1687 (2009)

    Article  Google Scholar 

  19. Lindner, B.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  Google Scholar 

  20. Gong, Y., Xie, Y., Lin, X., et al.: Non-Gaussian noise-optimized intracellular cytosolic calcium oscillations. Biosystems 103, 13–17 (2011)

    Article  Google Scholar 

  21. Wang, Q., Perc, M., Duan, Z., et al.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 80, 026206 (2009)

    Article  Google Scholar 

  22. Song, X., Wang, C., Ma, J., et al.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  23. Wang, H., Wang, L., Chen, Y., et al.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24, 033122 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wang, H., Ma, J., Chen, Y., et al.: Effect of an autapse on the firing pattern transition in a bursting neuron. Commun. Nonlinear Sci. Numer. Simul. 19, 3242–3254 (2014)

    Article  MathSciNet  Google Scholar 

  25. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Article  Google Scholar 

  26. Li, J., Liu, S., Liu, W., et al.: Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn. 83, 801–810 (2015)

    Article  MathSciNet  Google Scholar 

  27. Robertson, J.A., Thberge, J., Weller, J., et al.: Low-frequency pulsed electromagnetic field exposure can alter neuroprocessing in humans. J. R. Soc. Interface 7, 467–473 (2010)

    Article  Google Scholar 

  28. Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85, 881–891 (2016)

    Article  MathSciNet  Google Scholar 

  29. Chua, L., Sbitnev, V., Kim, H.: HodgkinHuxley axon is made of memristors. Int. J. Bifurc. Chaos 22, 1230011 (2012)

    Article  MATH  Google Scholar 

  30. Sah, M.P., Kim, H., Eroglu, A., et al.: Memristive model of the barnacle giant muscle fibers. Int. J. Bifurc. Chaos 26, 1630001 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hegab, A.M., Salem, N.M., Radwan, A.G., et al.: Neuron model with simplified memristive ionic channels. Int. J. Bifurc. Chaos 25, 1530017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pham, V.T., Jafari, S., Vaidyanathan, S., et al.: A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2015)

    Article  Google Scholar 

  33. Li, Q., Tang, S., Zeng, H., et al.: On hyperchaos in a small memristive neural network. Nonlinear Dyn. 78, 1087–1099 (2014)

    Article  MATH  Google Scholar 

  34. Thomas, A.: Memristor-based neural networks. J. Phys. D Appl. Phys. 46, 093001 (2013)

    Article  Google Scholar 

  35. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  36. Lv, M., Wang, C., Ren, G., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  37. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 31, 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  38. Wu, F., Wang, C., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  39. Wang, Y., Ma, J., Xu, Y., et al.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurc. Chaos 27, 1750030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, F., Wang, C., Jin, W., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)

    Article  MathSciNet  Google Scholar 

  41. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Physica D 241, 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Dudkowski, D., Jafari, S., Kapitaniak, T., et al.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chuas attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98, 134101 (2007)

    Article  Google Scholar 

  45. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101 (2005)

    Article  Google Scholar 

  47. Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the double well Duffing–van der Pol oscillator: numerical and analytical studies. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 56, 6321–6330 (1997)

    MathSciNet  Google Scholar 

  48. Abshagen, J., Lopez, J.M., Marques, F., et al.: Bursting dynamics due to a homoclinic cascade in Taylor? Couette flow. J. Fluid Mech. 613, 357–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mccann, K., Yodzis, P.: Nonlinear dynamics and population disappearances. Am. Nat. 144, 873–879 (1994)

    Article  Google Scholar 

  50. Li, C., Sprott, J.C.: Multistability in the Lorenz System: a broken butterfly. Int. J. Bifurc. Chaos 24, 1450131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, C., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sharma, P.R., Shrimali, M.D., Prasad, A., et al.: Control of multistability in hidden attractors. Eur. Phys. J. Spec. Top. 224, 1485–1491 (2015)

    Article  Google Scholar 

  53. Grebogi, C., Ott, E., Yorke, J.A.: Critical exponent of chaotic transients in nonlinear dynamical systems. Phys. Rev. Lett. 57, 1284–1287 (1986)

    Article  MathSciNet  Google Scholar 

  54. Dhamala, M., Lai, Y.C., Kostelich, E.J.: Analyses of transient chaotic time series. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64, 056207 (2001)

    Article  Google Scholar 

  55. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46, 228 (2010)

    Article  Google Scholar 

  56. Duan, S., Liao, X.: An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys. Lett. A 369, 37–43 (2007)

    Article  Google Scholar 

  57. Conti, M., Turchetti, C.: Approximation identify neural networks for analog synthesis of nonlinear dynamical system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 841–858 (1994)

  58. Ozkurt, N., Savaci, F.A., Gunduzalp, M.: The circuit implementation of a wavelet function approximator. Analog Integr. Circuits Signal Process. 32, 171–175 (2002)

    Article  Google Scholar 

  59. Hu, X., Liu, C., Liu, L., et al.: An electronic implementation for MorrisLecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)

    Article  Google Scholar 

  60. Kesari, K.K., Siddiqui, M.H., Meena, R., et al.: Cell phone radiation exposure on brain and associated biological systems. Indian J. Exp. Biol. 51, 187 (2013)

    Google Scholar 

  61. Johansen, C.: Electromagnetic fields and health effects-epidemiologic studies of cancer, diseases of the central nervous system and arrhythmia-related heart disease. Scand. J. Work Environ. Health 30(Suppl 1), 1–30 (2004)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under the Grant Nos. 51307130 and 51177117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Liu, C., Liu, L. et al. Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn 91, 1541–1554 (2018). https://doi.org/10.1007/s11071-017-3963-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3963-6

Keywords

Navigation