Skip to main content
Log in

Nonlinear vibration behavior and resonance of a Cartesian manipulator system carrying an intermediate end effector

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studied the nonlinear vibration and resonance of a Cartesian manipulator system carrying an intermediate end effector under mixed excitations. The multiple scales method is applied to get the approximate solutions of this system of the second-order differential equation. Furthermore, the analytical solution obtained the amplitudes and phases of the response from the first-order differential equation governing. We extracted all worst resonance cases and studied it numerically. The numerical solutions and response amplitude of this system are also studied and discussed. We analyzed the stability of the steady-state solution of a Cartesian manipulator system using frequency response equations and phase plane technique at the worst resonance cases. Comparison between analytical and numerical solutions is obtained. We determined both bifurcation diagrams and stability using Poincaré maps. Also, the numerical results are obtained using MAPLE and MATLAB algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Coleman, M.P.: Vibration eigenfrequency analysis of a single-link flexible manipulator. J. Sound Vib. 212, 107–120 (1998)

    Article  Google Scholar 

  2. Coleman, M.P., McSweeney, L.A.: Analysis and computation of the vibration spectrum of the Cartesian flexible manipulator. J. Sound Vib. 274, 445–454 (2004)

    Article  Google Scholar 

  3. Chalhoub, N.G., Foury, G.A.K., Bazzi, B.A.: Design of robust controllers and a nonlinear observer for the control of a single-link flexible robotic manipulator. J. Sound Vib. 291, 437–461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dwivedy, S.K., Eberdhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41, 749–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dixit, U.S., Kumar, R., Dwivedy, S.K.: Shape optimization of flexible robotic manipulators. J. Mech. Des. 128, 559–565 (2006)

    Article  Google Scholar 

  6. Hassanpour, P.A., Esmailzadeh, E., Cleghorn, W.L., Mills, J.K.: Generalized orthogonality condition for beams with intermediate lumped masses subjected to axial force. J. Vib. Control 16, 665–683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pratiher, B., Dwivedy, S.K.: Non-linear dynamics of a flexible single link Cartesian manipulator. Int. J. Non-Linear Mech. 42, 1062–1073 (2007)

    Article  Google Scholar 

  8. Pratiher, B., Dwivedy, S.K.: Non-linear dynamics of a soft magneto-elastic Cartesian manipulator. Int. J. Non-Linear Mech. 44, 757–768 (2009)

    Article  MATH  Google Scholar 

  9. Pratiher, B., Dwivedy, S.K.: Nonlinear response of a flexible Cartesian manipulator with payload and pulsating axial force. Nonlinear Dyn. 57, 177–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pratiher, B., Bhowmick, S.: Nonlinear dynamic analysis of a Cartesian manipulator carrying an end effector placed at an intermediate position. Nonlinear Dyn. 69, 539–553 (2012)

    Article  MathSciNet  Google Scholar 

  11. Qiu, Z.: Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism. Mech. Syst. Signal Process. 30, 248–266 (2012)

    Article  Google Scholar 

  12. Rahimi, H.N., Nazemizadeh, M.: Dynamic analysis and intelligent control techniques for flexible manipulators: a review. Adv. Robot. 28, 63–76 (2014)

    Article  Google Scholar 

  13. Liu, Y., Li, W., Yang, X., Fan, M., Wang, Y., Lu, E.: Vibration response and power flow characteristics of a flexible manipulator with a moving base. Shock Vib. 2015 Article ID 589507 (2015) 1–8

  14. Liu, Y., Li, W., Yang, X., Wang, Y.: Effect of motion disturbances on the vibration responses of a flexible manipulator. In: The 14th IFToMM World Congress, Taipei, Taiwan October, 25–30 (2015)

  15. Kamel, M.M., Hamed, Y.S.: Non-linear analysis of an inclined cable under harmonic excitation. Acta Mech. 214(3–4), 315–325 (2010)

    Article  MATH  Google Scholar 

  16. El-Ganaini, W.A.A., Kamel, M.M., Hamed, Y.S.: Vibration reduction in ultrasonic machine to external and tuned excitation forces. Appl. Math. Model. 33, 2853–2863 (2009)

    Article  MATH  Google Scholar 

  17. Kamel, M.M., El-Ganaini, W.A.A., Hamed, Y.S.: Vibration suppression in ultrasonic machining described by non-linear differential equations. J. Mech. Sci. Technol. 23(8), 2038–2050 (2009)

    Article  MATH  Google Scholar 

  18. Kamel, M.M., El-Ganaini, W.A.A., Hamed, Y.S.: Vibration suppression in multi-tool ultrasonic machining to multi-external and parametric excitations. Acta. Mech. Sin. 25, 403–415 (2009)

    Article  MATH  Google Scholar 

  19. Hamed, Y.S., Sayed, M., Cao, D.-X., Zhang, W.: Nonlinear study of the dynamic behavior of a string-beam coupled system under combined excitations. Acta. Mech. Sin. 27(6), 1034–1051 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sayed, M., Hamed, Y.S.: Stability and response of a nonlinear coupled pitch-roll ship model under parametric and harmonic excitations. Nonlinear Dyn. 64, 207–220 (2011)

    Article  MathSciNet  Google Scholar 

  21. Hamed, Y.S., Amer, Y.A.: Nonlinear saturation controller for vibration supersession of a nonlinear composite beam. J. Mech. Sci. Technol. 28(8), 2987–3002 (2014)

    Article  Google Scholar 

  22. Hamed, Y.S.: Nonlinear oscillations and chaotic dynamics of a supported FGM rectangular plate system under mixed excitations. J. VibroEng. 16(7), 3218–3235 (2014)

  23. Hamed, Y.S., Sayed, M.: Stability analysis and response of nonlinear rotor-seal system. J. VibroEng. 16(8), 4152–4170 (2014)

    Google Scholar 

  24. Hamed, Y.S., EL-Sayed, A.T., El-Zahar, E.R.: On controlling the vibrations and energy transfer in MEMS gyroscopes system with simultaneous resonance. Nonlinear Dyn. 83(3), 1687–1704 (2016)

  25. Cartmell, M.P.: Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  26. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical: Computational and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  27. Poincaré, H.: Les Methodes Nouvelles de la Méchanique Céleste. Gauthier-Villars, Paris (1899)

    MATH  Google Scholar 

  28. Just, W., Kantz, H.: Some considerations on Poincaré maps for chaotic flows. J. Phys. A Math. Gen. 33, 163–170 (2000)

    Article  MATH  Google Scholar 

  29. Tucker, Warwick: Computing accurate Poincaré maps. Physica D 171, 127–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)

    MATH  Google Scholar 

  31. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their useful comments that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Hamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, Y.S., Alharthi, M.R. & AlKhathami, H.K. Nonlinear vibration behavior and resonance of a Cartesian manipulator system carrying an intermediate end effector. Nonlinear Dyn 91, 1429–1442 (2018). https://doi.org/10.1007/s11071-017-3955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3955-6

Keywords

Navigation