Skip to main content
Log in

Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A compressed air generator hang under vehicle is simplified as a suspension mass connected to a vertical spring and two horizontal springs. It is configured generally as a geometrical negative stiffness to reduce dynamic stiffness. The periodic motion, chaotic motion and bifurcation of the compressed air generator model are investigated using the incremental harmonic balance method in combination with arc length continuation technique. The stability and bifurcation route are also distinguished with Floquet theory. The system exhibits a period doubling bifurcation route to chaos in different regions of excitation frequency. The stiffness ratio of the vertical spring and the horizontal spring has a significant influence on the dynamic response. When the vertical stiffness is close to the stiffness at horizontal direction, resonance occurs with the emergence of the chaotic motion. The dynamic response of the vibration system can be improved by reducing the stiffness in the horizontal direction to increase the stiffness ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ansari, K.A., Khan, N.U.: Nonlinear vibrations of a slider-crank mechanism. Appl. Math. Model 10, 114–118 (1986)

    Article  MATH  Google Scholar 

  2. Eissa, M., Sayed, M.: Vibration reduction of a three DOF non-linear spring pendulum. Commun. Nonlinear Sci. Numer. Simul. 13, 465–488 (2008)

    Article  MATH  Google Scholar 

  3. Rivin, E.I.: Passive vibration isolation. American Society of Mechanical Engineers Press, New York (2003)

    Book  Google Scholar 

  4. Robertson, W., Cazzolato, B., Zander, A.: Theoretical analysis of a non-contact spring with inclined permanent magnets for load-independent resonance frequency. J. Sound Vib. 331, 1331–1341 (2012)

    Article  Google Scholar 

  5. Wu, S.-T., Siao, P.-S.: Auto-tuning of a two-degree-of-freedom rotational pendulum absorber. J. Sound Vib. 331, 3020–3034 (2012)

    Article  Google Scholar 

  6. Acar, M.A., Yilmaz, C.: Design of an adaptive-passive dynamic vibration absorber composed of a string-mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332, 231–245 (2013)

    Article  Google Scholar 

  7. Carrella, A., Brennan, M.J., Waters, T.P., Lopes Jr, V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55, 22–29 (2012)

    Article  Google Scholar 

  8. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315, 712–720 (2008)

    Article  Google Scholar 

  9. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326, 88–103 (2009)

    Article  Google Scholar 

  10. Gatti, G., Brennan, M.J., Kovacic, I.: On the interaction of the responses at the resonance frequencies of a nonlinear two degrees-of-freedom system. Phys. D Nonlinear Phenom. 239, 591–599 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horton, B., Lenci, S., Pavlovskaia, E., Romeo, F., Rega, G., Wiercigroch, M.: Stability boundaries of period-1 rotation for a pendulum under combined vertical and horizontal excitation. J. Appl. Nonlinear Dyn. 2, 103–126 (2013)

    Article  MATH  Google Scholar 

  12. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332, 3359–3376 (2013)

    Article  Google Scholar 

  13. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study. J. Sound Vib. 333, 1132–1148 (2014)

    Article  Google Scholar 

  14. Wu, W., Chen, X., Shan, Y.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333, 2958–2970 (2014)

    Article  Google Scholar 

  15. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330, 6311–6335 (2011)

    Article  Google Scholar 

  16. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Article  Google Scholar 

  17. Zhou, N., Liu, K.: A tunable high-static-low-dynamic stiffness vibration isolator. J. Sound Vib. 329, 1254–1273 (2010)

    Article  Google Scholar 

  18. Tang, B., Brennan, M.J.: On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 81, 207–214 (2014)

    Article  Google Scholar 

  19. Meyer, F., Hartl, M., Schneider, S.: Dual-stage, plunger-type piston compressor with minimal vibration. EP Patent 1,242,741, 2005

  20. Lee, H., Song, G., Park, J., Hong, E., Jung, W., Park, K.: Development of the linear compressor for a household refrigerator. Fifteenth International Compressor Engineering Conference, Purdue University, West Lafayette (2000)

  21. Gonçalves, P.J.P., Silveira, M., Balthazar, J.M., Pontes Jr, B.R., Balthazar, J.M.: The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J. Sound Vib. 333, 5115–5129 (2014)

    Article  Google Scholar 

  22. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332, 167–183 (2013)

    Article  Google Scholar 

  23. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140, 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  24. Crisfield, M.A.: A fast incremental/iterative solution procedure that handles snap-through. Comput. Struct. 13, 55–62 (1981)

    Article  MATH  Google Scholar 

  25. Ritto-Corrêa, M., Camotim, D.: On the arc-length and other quadratic control methods: established, less known and new implementation procedures. Comput. Struct. 86, 1353–1368 (2008)

    Article  Google Scholar 

  26. Fafard, M., Massicotte, B.: Geometrical interpretation of the arc-length method. Comput. Struct. 46, 603–615 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75, 783–806 (2014)

    Article  MathSciNet  Google Scholar 

  28. Chen, S., Tang, J., Wu, L.: Dynamics analysis of a crowned gear transmission system with impact damping: based on experimental transmission error. Mech. Mach. Theory 74, 354–369 (2014)

    Article  Google Scholar 

  29. Grolet, A., Thouverez, F.: Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases. Mech. Syst. Signal Process. 52–53, 529–547 (2015)

    Article  Google Scholar 

  30. Dou, S., Jensen, J.S.: Optimization of nonlinear structural resonance using the incremental harmonic balance method. J. Sound Vib. 334, 239–254 (2015)

    Article  Google Scholar 

  31. Stoykov, S., Margenov, S.: Numerical computation of periodic responses of nonlinear large-scale systems by shooting method. Comput. Math. Appl. 67, 2257–2267 (2014)

    Article  MathSciNet  Google Scholar 

  32. Peletan, L., Baguet, S., Torkhani, M., Jacquet-Richardet, G.: A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics. Nonlinear Dyn. 72, 671–682 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Science Foundation of China (NSFC) through Grants Nos. 51305462 and 51275530.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Siyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuanping, L., Siyu, C. Periodic solution and bifurcation of a suspension vibration system by incremental harmonic balance and continuation method. Nonlinear Dyn 83, 941–950 (2016). https://doi.org/10.1007/s11071-015-2378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2378-5

Keywords

Navigation