Skip to main content
Log in

Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main purpose of this work is to demonstrate that bursting oscillations not only occur in slow-fast systems, which have been presented in many publications, but also may take place in periodic excited systems with order gap between the excited frequency and natural frequency. Furthermore, a typical procedure to analyze the bifurcation mechanism of the bursting oscillations in periodic excited dynamical systems is presented, in which the conceptions of generalized autonomous system (GAS) and transformed phase portrait are introduced. For the periodic external excited dynamo oscillator, different types of bursting phenomena can be obtained, the mechanism of which is presented based on the bifurcation analysis of the corresponding GAS. From the evolution of the dynamics with the variation of the parameters, it is found that different forms of bifurcations, occurring at the transitions between the quiescent state and spiking state, may cause different patterns of bursting oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abobda, L.T., Woafo, P.: Subharmonic and bursting oscillations of a ferromagnetic mass fixed on a spring and subjected to an AC electromagnet. Commun. Nonlinear Sci. Numer. Simul. 17, 3082–3091 (2012)

  2. Courbage, M., Maslennikov, O.V., Nekorkin, V.I.: Synchronization in time-discrete model of two electrically coupled spike-bursting neurons. Chaos Solitons Fractals 45, 645–659 (2012)

    Article  Google Scholar 

  3. Tsaneva-Atanasova, K., Osinga, H.M., Rieß, T., Sherman, A.: Full system bifurcation analysis of endocrine bursting models. J. Theor. Biol. 264, 1133–1146 (2010)

    Article  Google Scholar 

  4. Shilnikov, A.: Complete dynamical analysis of a neuron model. Nonlinear Dyn. 68, 305–328 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Simo, H., Woafo, P.: Bursting oscillations in electromechanical systems. Mech. Res. Commun. 38, 537–541 (2011)

    Article  MATH  Google Scholar 

  6. Kingni, S.T., Keuninckx, L., Woafo, P., Sande, G., Danckaert, J.: Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dyn. 73, 1111–1123 (2013)

    Article  MATH  Google Scholar 

  7. Watts, M., Tabak, J., Zimliki, C., Sherman, A., Bertram, R.: Slow variable dominance and phase resetting in phantom bursting. J. Theor. Biol. 276, 218–228 (2011)

    Article  Google Scholar 

  8. Izhikevich, E.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schaffer, W.M., Bronnikova, V.: Peroxidase-ROS interactions. Nonlinear Dyn. 68, 413–430 (2012)

    Article  Google Scholar 

  10. Han, X.J., Jiang, B., Bi, S.: Symmetric bursting of focusCfocus type in the controlled Lorenz system with two time scales. Phys. Lett. A 373, 3643–3649 (2009)

    Article  MATH  Google Scholar 

  11. Bi, Q.S., Zhang, Z.D.: Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales. Phys. Lett. A 375, 1183–1190 (2011)

    Article  MATH  Google Scholar 

  12. Wierschem, K., Bertram, R.: Complex bursting in pancreatic islets: a potential glycolytic mechanism. J. Theor. Biol. 228, 513–521 (2004)

    Article  Google Scholar 

  13. Han, X.J., Bi, Q.S.: Bursting oscillations in Duffings equation with slowly changing external forcing. Commun. Nonlinear Sci. Numer. Simul. 16, 4146–4152 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zheng, S., Han, X.J., Bi, Q.S.: Bifurcations and fast-slow behaviors in a hyperchaotic dynamical system. Commun. Nonlinear Sci. Numer. Simul. 16, 1998–2005 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rasmussen, A., Wyller, J., Vik, J.O.: Relaxation oscillations in spruceCbudworm interactions. Nonlinear Anal. Real World Appl. 12, 304–319 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fractals 18, 759–773 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, Z.D., Li, Y.Y., Bi, Q.S.: Routes to bursting in a periodically driven oscillator. Phys Lett A 377, 975–980 (2013)

    Article  MathSciNet  Google Scholar 

  18. Skeldon, A.C., Moroz, I.M.: On a codimension-three bifurcation arising in a simple dynamo model. Physica D 117, 117–127 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. DaCunha, J.J., Davis, J.M.: A unified Floquet theory for discrete, continuous, and hybrid periodic linear systems. J. Differ. Equ. 251, 2987–3027 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are supported by the National Natural Science Foundation of China (21276115, 1272135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinsheng Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, Q., Ma, R. & Zhang, Z. Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales. Nonlinear Dyn 79, 101–110 (2015). https://doi.org/10.1007/s11071-014-1648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1648-y

Keywords

Navigation