Skip to main content
Log in

Ratio-dependent predator–prey model of interacting population with delay effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A system of delay differential equation is proposed to account the effect of delay in the predator–prey model of interacting population. In this article, the modified ratio-dependent Bazykin model with delay in predator equation has been considered. The essential mathematical features of the proposed model are analyzed with the help of equilibria, local and global stability analysis, and bifurcation theory. The parametric space under which the system enters into a Hopf-bifurcation has been investigated. Global stability results are obtained by constructing suitable Lyapunov functions. We derive the explicit formulae for determining the stability, direction, and other properties of bifurcating periodic solutions by using normal form and central manifold theory. Using the global Hopf-bifurcation result of Wu (Trans. Am. Math. Soc., 350:4799–4838, 1998) for functional differential equations, the global existence of periodic solutions has been established. Our analytical findings are supported by numerical experiments. Biological implication of the analytical findings are discussed in the conclusion section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J.: Symmetric functional differential equations and nural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998)

    Article  MATH  Google Scholar 

  2. Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions I Regulatory Processes. J. Anim. Ecol. 47, 219–247 (1978)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M.: The population dynamics of microparasites and their invertebrates hosts. Proc. R. Soc. Lond. B 291, 451–524 (1981)

    Google Scholar 

  4. Anderson, R.M., May, R.M.: The invasion persistence and spread of infectious diseases within animal and plant communities. Proc. R. Soc. Lond. B 314, 533–570 (1986)

    Google Scholar 

  5. Anderson, R.M., May, R.M.: Infectious Disease of Humans, Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  6. Bailey, N.J.T.: The Mathematical Theory of Infectious Disease and Its Applications. Griffin, London (1975)

    Google Scholar 

  7. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: Epidemic Models, Their Structure and Relation to Data. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  8. Kuang, Y.: Delay Differential Equation with Applications in Population Dynamics. Academic Press, New York (1993)

    Google Scholar 

  9. Gopalsamy, K.: Stability and Oscillation in Delay Differential Equation of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  10. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  11. May, R.M.: Stability and Complexity in Model Ecosystem. Princeton Univ. Press, Princeton (1974)

    Google Scholar 

  12. Curds, C.R., Cockburn, A.: Studies on the growth and feeding of tetrahymena pyriformis in axenic and monoxenic culture. J. Gen. Microbiol. 54, 343–358 (1968)

    Google Scholar 

  13. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969)

    Article  Google Scholar 

  14. Salt, G.W.: Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum. Ecology 55, 434–439 (1974)

    Article  Google Scholar 

  15. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratiodependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  16. Arditi, R., Berryman, A.A.: The biological control paradox. Trends Ecol. Evol. 6, 32 (1991)

    Article  Google Scholar 

  17. Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)

    Article  Google Scholar 

  18. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio dependent predation: an abstraction that works. Ecology 76, 995–1004 (1995)

    Article  Google Scholar 

  19. Conser, C., Angelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  Google Scholar 

  20. Gutierrez, A.P.: The physiological basis of ratio-dependent predator–prey theory: a metabolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552–1563 (1992)

    Article  Google Scholar 

  21. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32 (1999)

    Article  Google Scholar 

  22. Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey system. Fields Inst. Commun. 21, 325–337 (1999)

    MathSciNet  Google Scholar 

  23. Thieme, H.: Mathematical biology, an introduction via selected topics. Lecture Note at Arizona State University (1997)

  24. Hsu, S.B., Hwang, T.W., Kuang, Y.: Rich dynamics of ratio-dependent one prey two predators model. J. Math. Biol. 43, 377–396 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cosner, C.: Variability vagueness and comparison methods for ecological models. Bull. Math. Biol. 58, 207–246 (1996)

    Article  MATH  Google Scholar 

  26. Kuang, Y., Bertta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bazykin, A.D.: Non-linear dynamics of interacting populations. In: Chua, L.O. (ed.) Series on Non Linear Science, Series A, vol. 11. World Scientific, Singapore (1985). Original Russian version: Bazykin, A.D., Nauka, Moscow (1998)

    Google Scholar 

  28. Alekseev, V.V.: Effect of saturation factor on dynamics of predator prey system. Biofizika 18, 922–926 (1973)

    Google Scholar 

  29. Bazykin, A.D.: Volterra’s system and Michaelis–Menten equation. In: Voprosy Matematicheskoi Genetiki, Novosibirsk, pp. 103–143 (1974)

    Google Scholar 

  30. Bazykin, A.D.: Structure and dynamical stability of model predator–prey systems. Laxenburg, IIASA, RM-76-8 (1976)

  31. Bazykin, A.D., Brezovskaya, F.S., Buriev, T.I.: Dynamics of predator–prey system including predator saturation and competition. In: Faktory Raznoobraziya v Matematicheskoi Ekologii i Populyatsionnoi Genetike, Pushchino, pp. 6–33 (1980)

    Google Scholar 

  32. Wang, W.D., Chen, L.S.: A predator–prey system with stage-structure for predator. J. Comput. Appl. Math. 33, 83–101 (1997)

    Google Scholar 

  33. Zhao, T., Kuang, Y., Smith, H.L.: Global existence of periodic solutions in a class of delayed gause-type predator–prey systems. Nonlinear Anal. 28, 1373–1390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Freedman, H.I., Hari Rao, V.S.: The trade-off between mutual interference and time lags in predator–prey system. Bull. Math. Biol. 45, 991–1004 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Song, X.Y., Chen, L.S.: Optimal harvesting and stability with stage-structure for a two species competitive system. Math. Biosci. 170, 173–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hale, J.K.: Theory of Functional Differential Equations. Springer, New York (1996)

    Google Scholar 

  37. Hassard, B.D., Kazarinof, N.D., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  38. Wang, W.D., Ma, Z.: Harmless delays for uniform persistence. J. Math. Anal. Appl. 158, 256–268 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bhunia, A.B.: Ecology of tidal creeks and mudflats of Sagar Island (Sunderbans) West Bengal. Ph.D. dissertation, Calcutta University (1979)

  40. Roy, M., Mandal, S., Ray, S.: Detrital ontogenic model including decomposer diversity. Ecol. Model. 215, 200–206 (2008)

    Article  Google Scholar 

  41. Mandal, S., Ray, S., Ghosh, P.B.: Modelling of the contribution of dissolved inorganic nitrogen (DIN) from litterfall of adjacent mangrove forest to Hooghly–Matla estuary. India Ecol. Model. 220, 2988–3000 (2009)

    Article  Google Scholar 

  42. Sun, C., Han, M., Lin, Y., Chen, Y.: Global qualitative analysis for a predator–prey system with delay. Chaos Solitons Fractals 32, 1582–1596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Song, Y., Han, M., Peng, Y.: Stability and Hopf bifurcations in a competitive Lotka–Volterra system with two delays. Chaos Solitons Fractals 22, 1139–1148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Song, Y., Yuan, S.: Bifurcation analysis in a predator–prey system with time delay. Nonlinear Anal. 7, 265–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanta Kumar Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwardi, S., Haque, M. & Mandal, P.K. Ratio-dependent predator–prey model of interacting population with delay effect. Nonlinear Dyn 69, 817–836 (2012). https://doi.org/10.1007/s11071-011-0307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0307-9

Keywords

Navigation