Skip to main content

Advertisement

Log in

Early warning system for rainfall-triggered landslides based on real-time probabilistic hazard assessment

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A methodology to define rainfall-landslide thresholds, using a probabilistic model in which the accumulated rainfall at any time is treated as a random variable, is proposed. The region under study is divided into areas of homogeneous rain hazard. For each homogeneous area, a probability model is fitted using state-of-the-art statistical methods, for each accumulation time considered. Thresholds are obtained by the definition of confidence intervals. Instantaneous accumulated rains, measured in real-time, are used to calculate the instantaneous probabilities of a landslide at each area and accumulation time. The maximum instantaneous probability determines the critical accumulated rain and sets the issued warning level. In addition, the model is tested, retrospectively, with the data for the disaster of April 19, 2017, in Manizales, Colombia, where 38 rainfall-triggered landslides killed 17 people and affected more than 3126 families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahmad R (2003) Developing early warning systems in Jamaica: rainfall thresholds for hydrological hazards. In: en National disaster management conference, Ocho Rios, St. Ann, Jamaica, p 910. http://www.mona.uwi.edu/uds/rainhazards_files/frame.htm

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73(3–4):247–265. https://doi.org/10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Aleotti P, Baldelli P, Bellardone G, Quaranta N, Tresso F, Troisi C, Zani A (2002) Soil slips triggered by October 13–16, 2000 flooding event in the Piedmont Region (Northwest Italy): critical analysis of rainfall data. Geologia Tecnica e Ambientale 1:15–25

    Google Scholar 

  • Annunziati A, Focardi A, Focardi P, Martello S, Vannocci P (2000) Analysis of the rainfall thresholds that induced debris flows in the area of Apuan Alps-Tuscany, Italy (19 June 1996 storm). In: Proceedings of EGS Plinius conference on mediterranean storms, Maratea, Italy, pp 485–493

  • Arboleda R, Martinez M (1996) 1992 Lahars in the pasig-potrero river system, fire and mud; Eruptions and Lahars of Mount Pinatubo, The Philippines

  • Bacchini M, Zannoni A (2003) Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy). Nat Hazards Earth Syst Sci 3(1/2):71–79. https://doi.org/10.5194/nhess-3-71-2003

    Article  Google Scholar 

  • Barbero S, Rabuffetti D, Zaccagnino M (2004) Una metodologia per la definizione delle soglie pluviometriche a supporto dell’emissione dell’allertamento. In: en 29° Convegno Nazionale di Idraulica e Costruzioni Idrauliche, pp 211–217

  • Baum RL, Godt JW, Harp EL, McKenna JP, McMullen SR (2005) Early warning of landslides for rail traffic between Seattle and Everett, Washington, USA. In: Landslide Risk Management. CRC Press, pp 741–750

  • Bell FG, Maud RR (2000) Landslides associated with the colluvial soils overlaying the Natal group in the greater Durban region of Natal, South Africa. Environ Geol 39(9):1029–1038. https://doi.org/10.1007/s002549900077

    Article  Google Scholar 

  • Bernal GA, Salgado-Gálvez MA, Zuloaga D, Tristancho J, González D, Cardona OD (2017) Integration of probabilistic and multi-hazard risk assessment within urban development planning and emergency preparedness and response: application to manizales, Colombia. Int J Disaster Risk Sci 8(3):270–283

    Article  Google Scholar 

  • Bhandari RK, Senanayake KS, Thayalan N (1991) Pitfalls in the prediction on landslide through rainfall data. In: Bell DH (ed) Landslides, 2nd edn. A.A. Balkema, Rotterdam, pp 887–890

    Google Scholar 

  • Bolley S, Oliaro P (1999) Analisi dei debris flows in alcuni bacini campione dell’Alta Val Susa. Geoingegneria Ambientale e Mineraria, Marzo, pp 69–74

    Google Scholar 

  • Caine N (1980) The rainfall intensity: duration control of shallow landslides and debris flows. Geografiska Annaler Ser A Phys Geogr 62(1/2):23

    Article  Google Scholar 

  • Calcaterra D, Parise M, Palma B, Pelella L (2000) The influence of meteoric events in triggering shallow landslides in pyroclastic deposits of Campania, Italy. In: Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides held in Cardiff on 26–30 June 2000. Thomas Telford Publishing, pp 1–209

  • Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorm in Valtellina (Central Alps -Italy). In: en IV Int. Conf. and field workshop on Landslides, pp 267–272

  • Cannon S (1988) Regional rainfall-threshold conditions for abundant debris-flow activity. In: en Floods, and Marine Effects of the Storm of January 3–5, 1982, in the San Francisco Bay region, California, pp 35–42

  • Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif Geol 38(12):267–272

    Google Scholar 

  • Cannon SH, Gartner JE (2005) Wildfire-related debris flow from a hazards perspective. In: en Debris-flow hazards and related phenomena. Springer, Berlin, pp 363–385. https://doi.org/10.1007/3-540-27129-5_15

  • Canuti P, Focardi P, Garzonio CA (1985) Correlation between rainfall and landslides. Bull Int Assoc Eng Geol 32(1):49–54. https://doi.org/10.1007/bf02594765

    Article  Google Scholar 

  • Cardona OD, Bernal G, Zuloaga D, Escovar MA, Villega, C, Gonzáles D, Molina JF (2016) Hazard and risk modelling system of Bogotá. https://doi.org/10.13140/RG.2.2.31828.60800

  • Ceriani M, Lauzi S, Padovan N (1992) Rainfalls and landslides in the alpine area of Lombardia Region-Central Alps-Italy. In: Proceedings of the VII international congress interpraevent 1992, Bern, pp 9–20

  • Chien-Yuan C, Tien-Chien C, Fan-Chieh Y, Wen-Hui Y, Chun-Chieh T (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol 47(5):715–724

    Article  Google Scholar 

  • Clarizia M, Gullà G, Sorbino G (1996) Sui meccanismi di innesco dei soil slip. In: en international conference, prevention of hydrogeological hazards: the role of scientific research, pp 585–597

  • Coe JA, Kinner DA, Godt JW (2008) Initiation conditions for debris flows generated by runoff at Chalk Cliffs, central Colorado. Geomorphology. 96(3–4):270–297

    Article  Google Scholar 

  • Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30(1–2):79–93. https://doi.org/10.1016/S0169-555X(99)00046-X

    Article  Google Scholar 

  • Corominas J, Ayala FJ, Cendrero A, Chacón J, Díaz de Terán JR, Gonzáles A, Moja J, Vilaplana JM (2005) Impacts on natural hazard of climatic origin. ECCE final report: a preliminary assessment of the impacts in Spain due to the effects of climate change. Ministerio de Medio Ambiente

  • CORPOCALDAS (2012) Bases de datos de deslizamientos 2001–2012 (documento interno). Corporación Regional Autónoma de Caldas–CORPOCALDAS, Manizales (Colombia)

    Google Scholar 

  • Crosta GB, Frattini P (2000) Rainfall thresholds for soil slip and debris flow triggering. In: en proceedings of the EGS 2nd Plinius conference on Mediterranean Storms, pp 463–488. https://www.researchgate.net/profile/P_Frattini/publication/285298340_Rainfall_thresholds_for_triggering_soil_slips_and_debris_flow/links/58eb31240f7e9b978f8411ce/Rainfall-thresholds-for-triggering-soil-slips-and-debris-flow.pdf

  • Floris M, Mari M, Romeo RW, Gori U (2004) Modelling of landslide-triggering factors-a case study in the northern Apennines, Italy. In: Engineering geology for infrastructure planning in Europe. Springer, Berlin

    Chapter  Google Scholar 

  • Giannecchini R (2005) Rainfall triggering soil slips in the southern Apuan Alps (Tuscany, Italy). Adv Geosci 2:21–24. https://doi.org/10.5194/adgeo-2-21-2005

    Article  Google Scholar 

  • Govi M, Sorzana PF (1980) Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Stud geomorphol, Carpatho-Balc

    Google Scholar 

  • Govi M, Mortara G, Sorzana PF (1985) Eventi idrologici e frane. Geologia Applicata Ingegneria 20(2):359–375

    Google Scholar 

  • Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslides in a humid tropical environment. Bull Int Assoc Eng Geol 16(1):13–20. https://doi.org/10.1007/BF02591434

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Balducci V (2018) Rainfall Thresholds for the Initiation of Landslides, Istituto di Ricerca per la Protezione Idrogeologica. Italy.  http://rainfallthresholds.irpi.cnr.it/. Retrieved 7 Aug 2018

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98(3–4):239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Heyerdahl H, Harbitz CB, Domaas U, Sandersen F, Tronstad K, Nowacki F, Engen A, Kjekstad O, Devoli G, Buezo SG, Diaz MR (2003) Rainfall induced lahars in volcanic debris in Nicaragua and El Salvador: practical mitigation. In: Proceedings of international conference on fast slope movements—prediction and prevention for risk mitigation, IC-FSM2003. Patron Pub, Naples, pp 275–282

  • Hong Y, Hiura H, Shino K, Sassa K, Suemine A, Fukuoka H, Wang G (2005) The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island, Japan. Landslides 2(2):97–105

    Article  Google Scholar 

  • Innes JL (1983) Debris flows. Prog Phys Geogr 7(4):469–501. https://doi.org/10.1177/030913338300700401

    Article  Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156. https://doi.org/10.1016/S0169-555X(02)00339-2

    Article  Google Scholar 

  • Jan C, Chen C (2005) Debris flows caused by Typhoon Herb in Taiwan, debris flow hazards and related phenomena. Springer, Berlin. https://doi.org/10.1007/3-540-27129-5_21

    Book  Google Scholar 

  • Jibson RW (1989) Debris flows in southern Puerto Rico. en Geological Society of America Special Papers. https://doi.org/10.1130/spe236-p29

    Article  Google Scholar 

  • Kanji MA, Massad F, Cruz PT (2003) Debris flows in areas of residual soils: occurrence and characteristics. In: International workshop on occurrence and machanisms of flows in natural slopes and earthfills, (December 1999), pp 1–11

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler Ser A Phys Geogr 75(1–2):13–23. https://doi.org/10.1080/04353676.1993.11880379

    Article  Google Scholar 

  • Lumb PB (1975) Slope failures in Hong Kong, Q.J. Engineering Geologist. GeoSci World 8:31–65. https://doi.org/10.1144/gsl.qjeg.1975.008.01.02

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17. https://doi.org/10.1016/S0169-555X(01)00162-3

    Article  Google Scholar 

  • Montgomery DR, Schmidt KM, Greenberg HM, Dietrich WE (2000) Forest clearing and regional landsliding. Geology 28(4):311–314

    Article  Google Scholar 

  • Moser M, Hohensinn F (1983) Geotechnical aspects of soil slips in Alpine regions. Eng Geol 19(3):185–211. https://doi.org/10.1016/0013-7952(83)90003-0

    Article  Google Scholar 

  • Naidu S, Sajinkumar KS, Oommen T, Anuja VJ, Samuel RA, Muraleedharan C (2018) Early warning system for shallow landslides using rainfall threshold and slope stability analysis. Geosci Front 9(6):1871–1882

    Article  Google Scholar 

  • National Research Council (2004) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. National Academies Press, Edinburgh

    Google Scholar 

  • Nilsen (1975) Influence of rainfall and ancient landslide deposits on recent landslides (1950–1971) in urban areas of Contra Costa County, California. Usgs 1388, p 24. https://pubs.er.usgs.gov/publication/b1388. Retrieved 21 Mar 2018

  • Oberste-Lehn D (1976) Slope stability of the Lomerias Muertas area, San Benito County, California. http://adsabs.harvard.edu/abs/1976PhDT5O. Retrieved 7 Feb 2012

  • Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. J Jpn Soc Eng Geol 15(4):191–200. https://doi.org/10.5110/jjseg.15.191

    Article  Google Scholar 

  • Paronuzzi P, Coccolo A, Garlatti G (1998) Eventi meteorici critici e debris flow nei bacini montani del Friuli. L’acqua, pp 39–50. http://www.gruppocp.it/download/articoli/ACQUA_1998_debris_flows.pdf. Accedido 11 de abril de 2018

  • Pasuto A, Silvano S (1998) Rainfall as a trigger of shallow mass movements. A case study in the Dolomites, Italy. Environ Geol 35(2–3):184–189. https://doi.org/10.1007/s002540050304

    Article  Google Scholar 

  • Rodolfo KS, Arguden AT (1991) Rain-Lahar Generation and Sediment-Delivery Systems At Mayon Volcano, Philippines. Sedimentation in Volcanic Settings 45(June):71–87. https://doi.org/10.2110/pec.91.45.0071

    Article  Google Scholar 

  • Sandersen F (1996) The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. In: Proceedings the 7th International Symposium on Landslides, pp 97–114

  • Sorriso-Valvo M, Agnesi V, Gullà G, Merenda L, Antronico L, Di Maggio C, Filice E, Petrucci O, Tansi C (1994) Temporal and spatial occurrence of landsliding and correlation with precipitation time series in Montaldo Uffugo (Calabria) and Imera (Sicilia) areas. Temporal occurrence and forecasting of landslides in the European Community, Final Report, II, European Community, Programme EPOCH, Contract 90(0025):825–869

    Google Scholar 

  • Tatizana C, Ogura AT, Cerri LE, Rocha MD (1987) Análise de correlação entre chuvas e escorregamentos-Serra do Mar, município de Cubatão. Congresso Brasileiro de Geologia de Engenharia 5:225–236

    Google Scholar 

  • Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides: the integration of hydrologic models, slope stability models and geographic information systems for the hazard zonation of rainfall-triggered landslides with examples from Manizales. International Institute for Aerospace Survey and Earth Sciences, The Netherlands. Publication, p 32

  • Tuñgol NM, Regalado MTM (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Fire and mud: eruptions and lahars of Mount Pinatubo, The Philippines, (August 1991), pp 1023–1032. http://pubs.usgs.gov/pinatubo/contents.html

  • van Westen CJ, van Asch TWJ, Soeters R (2006) “Landslide hazard and risk zonation—Why is it still so difficult? Bull Eng Geol Environ 65(2):167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Wieczorek G (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California. Debris flows/avalanches: process, recognition, and mitigation, p 93. https://doi.org/10.1130/reg7. Retrieved 15 Nov 2012

  • Wieczorek GF, Morgan BA, Campbell RH (2000) Debris-flow hazards in the Blue Ridge of central Virginia. Environ Eng Geosci GeoScienceWorld 6(1):3–23. https://doi.org/10.2113/gseegeosci.6.1.3

    Article  Google Scholar 

  • Wilson C, Torikai JD, Ellen SD (1992) Development of rainfall warning thresholds for debris flows in the Honolulu District, Open File Report, pp 92–521

  • Zambrano J, Mejía F, Pachón JA, Correa O (2017) Análisis de la información de los eventos de lluvia presentados los días 18 y 19 de abril de 2017 en la ciudad de Manizales. Informe. Manizales (Colombia): Universidad Nacional de Colombia Sede Manizales, Instituto de Estudios Ambientales–IDEA, Grupo De Trabajo Académico en Ingeniería Hidráulica y Ambiental

  • Zêzere JL, Rodrigues ML (2002) Rainfall thresholds for landsliding in Lisbon Area (Portugal). In: Landslides: proceedings of the first european conference on landslides, Prague, Czech Republic, June 24-26, 2002, pp 333–338.  https://books.google.com/books?hl=es&lr=&id=psFSK_nUqqMC&oi=fnd&pg=PA333&dq=Rainfall+thresholds+for+landsliding+in+Lisbon+Area+(Portugal)&ots=bdVoSXVNXv&sig=gTOcuU7ZWZMZx4jN1m6UqBJgyoU. Retrieved 25 Nov 2014

  • Zêzere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5(3):331–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Darío Cardona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, O., García, F., Bernal, G. et al. Early warning system for rainfall-triggered landslides based on real-time probabilistic hazard assessment. Nat Hazards 100, 345–361 (2020). https://doi.org/10.1007/s11069-019-03815-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03815-w

Keywords

Navigation