Skip to main content

Advertisement

Log in

The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Drought monitoring is carried out using various drought indices, including SPI, to generate time series of dry and wet periods. Furthermore, the dispersion of dry and wet periods was embossed with different intensities (high, medium, and low) over the data record years. Although these results were very necessary for planning and predicting future droughts, it appeared that the application of any trend over dry and wet periods could provide more accurate and unbiased or safer predictions in terms of analysis process. Generally, most of the researchers believed that the results of a drought trend analysis have been influenced by short-term persistence or significant autocorrelation with different lags on drought event time series and the mentioned impact should be preferably removed. Accordingly, drought monitoring was accomplished using SPI and PNPI drought indices to extract time series of dry and wet periods in terms of 50-year (1965–2014) annual rainfall data of 40 synoptic stations over Iran. Having used the basic and modified Mann–Kendall nonparametric tests, it was attempted to analyze the trend of dry and wet periods extracted from mentioned indices. The results represent the relative advantage of using the modified Mann–Kendall test in drought trend analysis. Furthermore, it was shown that the trend of dry and wet periods was negative in the majority of selected stations and that this trend was significant at 95% confidence level in northwest of Iran. Also, the results indicated the similar performance of SPI and PNPI indices in trend analysis of dry and wet periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adeloye AJ, Montaseri M (2002) Preliminary streamflow data analyses prior to water resources planning study. Hydrol Sci J 47(5):679–692

    Article  Google Scholar 

  • Ahani H, Kherad M, Kousari MR, Roosmalen LV, Aryanfar R, Hosseini SM (2012) Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran. Theor Appl Climatol 112(3–4):553–564

    Google Scholar 

  • Amirataee B, Montaseri M, Sanikhani H (2016) The analysis of trend variations of reference evapotranspiration via eliminating the significance effect of all autocorrelation coefficients. Theor Appl Climatol 126:131–139

    Article  Google Scholar 

  • Amirataee B, Zeinalzadeh K (2016) Trends analysis of quantitative and qualitative changes in groundwater with considering the autocorrelation coefficients in west of Lake Urmia, Iran. Environ Earth Sci 75(5):371. doi:10.1007/s12665-015-4917-2

    Article  Google Scholar 

  • AMS (American Meteorological Society) (2004) Statement on meteorological drought. B Am Meteorol Soc 85:771–773

    Google Scholar 

  • Ashraf M, Routray JK (2015) Spatio-temporal characteristics of precipitation and drought in Balochistan Province Pakistan. Nat Hazards 77(1):229–254

    Article  Google Scholar 

  • Bars RL (1990) Hydrology: an introduction to hydrologic science. Addison-Wesley, New York

    Google Scholar 

  • Barua S, Ng AWM, Perera BJC (2011) Comparative evaluation of drought indices: a case study on the Yarra river catchment in Australia. J Water Res Pl-ASCE 137(2):215–226

    Article  Google Scholar 

  • Bhalme HN, Mooley DA (1980) Large-scale drought/floods and monsoon circulation. Mon Weather Rev 108:1197–1211

    Article  Google Scholar 

  • Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003) Spatial variability of drought: an analysis of the SPI in Sicily. Water Resour Manag 17:273–296

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Gerstengarbe F-W, Werner PC, Sutera A (2004) Potential predictability of dry and wet periods: sicily and Elbe-Basin (Germany). Theor Appl Climatol 77:125–138

    Article  Google Scholar 

  • Bradley RS, Dı´az HF, Eischeid JK, Jones PD, Kelly PM, Goodess CM (1987) Precipitation fluctuations over northern hemisphere land areas since the mid-19th century. Science 237:171–175

    Article  Google Scholar 

  • Brunetti M, Brunetti M, Maugeri M, Nanni T, Navarra A, Maugeri M, Nanni T, Navarra A (2002) Droughts and extreme events in regional daily Italian precipitation series. Int J Climatol 22:509–621

    Article  Google Scholar 

  • Daneshvar Vousoughi F, Dinpashoh Y, Aalami MT, Jhajharia D (2013) Trend analysis of groundwater using non-parametric methods (case study: ardabil plain). Stoch Environ Res Risk Assess 27:547–559

    Article  Google Scholar 

  • Dash BK, Rafiuddin M, Khanam F, Nazrul Islam M (2012) Characteristics of meteorological drought in Bangladesh. Nat Hazards 64(2):1461–1474

    Article  Google Scholar 

  • Dashtpagerdi MM, Kousari MR, Vagharfard H, Ghonchepour D, Esmaeilzadeh Hosseini M, Ahani H (2015) An investigation of drought magnitude trend during 1975–2005 in arid and semiarid regions of Iran. Environ Earth Sci 73:1231–1244

    Article  Google Scholar 

  • Edwards DC, Mckee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales. J Atmos Sci 634:1–30

    Google Scholar 

  • Gibbs WJ, Maher JV (1967) Rainfall deciles as drought indicators. Bureau of Meteorology, Bulletin No. 48, Melbourne

  • Golian S, Mazdiyasni O, AghaKouchak A (2015) Trends in meteorological and agricultural droughts in Iran. Theor Appl Climatol 119:679–688

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  • Herschy WR (2002) The world’s maximum observed floods. Flow Meas Instrum 13:231–235

    Article  Google Scholar 

  • Hulme M (1996) Recent climatic change in the world’s drylands. Geophys Res Lett 23:61–64

    Article  Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of stream flow in Turkey. J Hydrol 289:128–144

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation measures. Charles Griffin Inc, London

    Google Scholar 

  • Keyantash J, Dracup JA (2004) An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour Res. doi:10.1029/2003WR002610

    Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Gachon P (2009) Identification of temporal trends in annual and seasonal low flows occurring in Canadian rivers: the effect of short- and long-term persistence. J Hydrol 369:183–197

    Article  Google Scholar 

  • Kousari MR, Ahani H, Hendi-zadeh R (2013) Temporal and spatial trend detection of maximum air temperature in Iran during 1960−2005. Glob Planet Change 111:97–110

    Article  Google Scholar 

  • Kousari MR, Dastorani MT, Niazi Y, Soheili E, Hayatzadeh M, Chezgi J (2014) Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water Resour Manage 28:1857–1872

    Article  Google Scholar 

  • Liu XF, Wang SX, Zhou Y, Wang FT, Yang G, Liu WL (2016) Spatial analysis of meteorological drought return periods in China using copulas. Nat Hazards 80(1):367–388

    Article  Google Scholar 

  • Loukas A, Vasiliades L, Dalezios NR (2003) Inter comparison of meteorological drought indices for drought assessment and monitoring in greece. Paper presented at the 8th international conference on environmental science and technology lemons Island, 484–491

  • Mann HB (1945) Non-parametric test against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Marofi S, Soleymani S, Salarijazi M, Marofi H (2012) Watershed-wide trend analysis of temperature characteristics. Theor Appl Climatol 110:311–320

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th conference on applied climatology, American Meteorological Society, Boston, pp 179–184

  • Mirza MMQ (2002) Global warming and changes in the probability of occurrence of floods in Bangladesh and implications. Glob Environ Change 12:127–138

    Article  Google Scholar 

  • Mishra AK, Singh VP, Desai VR (2009) Drought characterization: a probabilistic approach. Stoch Environ Res Risk Assess 23(1):41–55

    Article  Google Scholar 

  • Modarres R, Sarhadi A (2009) Rainfall trends analysis of Iran in the last half of the twentieth century. J Geophys Res 114:D03101. doi:10.1029/2008JD010707

    Article  Google Scholar 

  • Montaseri M, Amirataee B (2016) Comprehensive stochastic assessment of meteorological drought indices. Int J Climatol. doi:10.1002/joc.4755

    Google Scholar 

  • Moreira EE, Paulo AA, Pereira LS, Mexia JT (2006) Analysis of SPI drought class transitions using loglinear models. J Hydrol 331:349–359

    Article  Google Scholar 

  • Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol 26:971–985

    Article  Google Scholar 

  • Najafi MR, Moazami S (2016) Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. Int J Climatol 36:1863–1872

    Article  Google Scholar 

  • Nandintsetseg B, Shinoda M (2013) Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat Hazards 66(2):995–1008

    Article  Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1899–1922

    Article  Google Scholar 

  • Nitzche MH, Silva BB, Martinez AS (1985) Indicativo de ano Seco e Chuvoso. Sociedade Brasileira de Agrometeorologia, Londrina, pp 307–314

    Google Scholar 

  • Palmer WC (1965) Meteorological drought. Research paper no. 45, U.S. Department of Commerce Weather Bureau, Washington, DC

  • Piccarreta M, Capolongo D, Boenzi F (2004) Trend analysis of precipitation and drought in Basilicata from 1923 to 2000 within a Southern Italy context. Int J Climatol 24:907–922

    Article  Google Scholar 

  • Rebetez M (1999) Twentieth century trends in droughts in southern Switzerland. Geophys Res Lett 26(6):755–758

    Article  Google Scholar 

  • Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19:135–141

    Article  Google Scholar 

  • Sayari N, Bannayan M, Alizadeh A, Farid A (2013) Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (case study: kashafrood basin). Met Apps 20:115–127

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat As 63:1379–1389

    Article  Google Scholar 

  • Shafer BA, Dezman LE (1982) Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In: Western snow conference, Fort Collins, CO, 164–175

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Silva Y, Takahashi K, Chávez R (2007) Dry and wet rainy seasons in the Mantaro River basin (central Peruvian Andes). Adv Geosci 14:1–4

    Google Scholar 

  • Smith JB, Huq S, Lenhart S, Mata LJ, Nemesova I, Toure S (1996) Vulnerability and adaptation to climate change: interim results from the US country studies program. Kluwer Academic Publishers, Dordrecht

  • Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazard Earth Sys Sci 11(1):33–51

    Article  Google Scholar 

  • Tabari H, Abghari H, Hosseinzadeh Talaee P (2012a) Temporal trends and spatial characteristics of drought and rainfall in arid and semiarid regions of Iran. Hydrol Process 26:3351–3361

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011) Recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorol Atmos Phys 111:121–131

    Article  Google Scholar 

  • Tabari H, Talaee PH, Ezani A, Shifteh Some’e B (2012b) Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theor Appl Climatol 109:95–108

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Part 3, Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A53 1397–1412

  • Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. Eur Water 9(10):3–11

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Cuadrat-Prats JM (2007) Trends in drought intensity and variability in the middle Ebro valley (NE of the Iberian Peninsula) during the second half of the twentieth century. Theor Appl Climatol 88:247–258

    Article  Google Scholar 

  • Vicente-Serrano SM, González-Hidalgo JC, de Luis M, Raventós J (2004) Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Clim Res 26:5–15

    Article  Google Scholar 

  • Von Storch H (1995) Misuses of statistical analysis in climate research. In: Storch HV, Navarra A (eds) Analysis of climate variability: applications of statistical techniques. Springer, Berlin, pp 11–26

    Chapter  Google Scholar 

  • Wang X, Shen H, Zhang W, Cao J, Qi Y, Chen G, Li X (2015a) Spatial and temporal characteristics of droughts in the Northeast China transect. Nat Hazards 76:601–614

    Article  Google Scholar 

  • Wang W, Zhu Y, Xu R, Liu J (2015b) Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat Hazards 75:2437–2451

    Article  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1997) The regional impacts of climate change: an assessment of vulnerability. Cambridge University Press, Cambridge, p 517

    Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351

    Article  Google Scholar 

  • Wilhite DA (2000) Drought: a global assessment Volume I. Rutledge Press, London

    Google Scholar 

  • Wilhite DA, Glantz MH (1985) Understanding the drought phenomenon: the role of definitions. Water Int 10:111–120

    Article  Google Scholar 

  • Willeke G, Hosking JRM, Wallis JR, Guttman NB (1994) The national drought atlas, Institute for water resources report 94-NDs-4. Army Corps of Engineers, Washington, D.C.

    Google Scholar 

  • World Meteorological Organization (WMO) (2003) Statement on the status of global climate in 2003. WMO Publ. no. 966, WMO, Geneva

    Google Scholar 

  • Worrall F, Burt TP, Adamson JK (2006) Trends in drought frequency—the fate of doc export from British peatlands. Clim Change 76:339–359

    Article  Google Scholar 

  • Xu C-Y, Singh VP (2004) Review on regional water resources assessment models under stationary and changing climate. Water Resour Manag 18:591–612

    Article  Google Scholar 

  • Xu ZX, Takeuchi K, Ishidaira H (2003) Monotonic trend and step changes in Japanese precipitation. J Hydrol 279:144–150

    Article  Google Scholar 

  • Yeh CF, Wang J, Yeh HF, Lee CH (2015) Spatial and temporal streamflow trends in northern taiwan. Water 7:634–651

    Article  Google Scholar 

  • Yue S, Hashino M (2003) Temperature trends in Japan: 1900–1996. Theor Appl Climatol 75:15–27

    Google Scholar 

  • Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48(1):51–63

    Article  Google Scholar 

  • Yue S, Wang CY (2002) The influence of serial correlation on the Mann–Whitney test for detecting a shift in median. Adv Water Resour 25:325–333

    Article  Google Scholar 

  • Zarenistanak M, Dhorde AG, Kripalani RH (2014) Temperature analysis over southwest Iran: trends and projections. Theor Appl Climatol 116(1):103–117

    Article  Google Scholar 

  • Zhai L, Feng Q (2009) Spatial and temporal pattern of precipitation and drought in Gansu Province Northwest China. Nat Hazards 49:1–24

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP, Bai Y (2012) SPI-based evaluation of drought events in Xinjiang. China. Nat Hazards 64(1):481–492

    Article  Google Scholar 

  • Zhang Q, Singh VP, Li J, Chen X (2011) Analysis of the periods of maximum consecutive wet days in China. J Geophys Res. doi:10.1029/2011JD016088

    Google Scholar 

  • Zhang Q, Xu C-Y, Gemmer M, Chen YD, Liu C-L (2008) Changing properties of precipitation concentration in the Pearl River basin, China. Stoch Environ Res Risk Assess 23(3):377–385

    Article  Google Scholar 

  • Zhang Q, Xu C-Y, Zhang Z (2009) Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theor Appl Climatol 98:89–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Amirataee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirataee, B., Montaseri, M. The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran. Nat Hazards 86, 89–106 (2017). https://doi.org/10.1007/s11069-016-2675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2675-4

Keywords

Navigation