Skip to main content
Log in

Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Tsunami evacuation planning in coastal communities is typically focused on local events where at-risk individuals must move on foot in a matter of minutes to safety. Less attention has been placed on distant tsunamis, where evacuations unfold over several hours, are often dominated by vehicle use and are managed by public safety officials. Traditional traffic simulation models focus on estimating clearance times but often overlook the influence of varying population demand, alternative modes, background traffic, shadow evacuation, and traffic management alternatives. These factors are especially important for island communities with limited egress options to safety. We use the coastal community of Balboa Island, California (USA), as a case study to explore the range of potential clearance times prior to wave arrival for a distant tsunami scenario. We use a first-in–first-out queuing simulation environment to estimate variations in clearance times, given varying assumptions of the evacuating population (demand) and the road network over which they evacuate (supply). Results suggest clearance times are less than wave arrival times for a distant tsunami, except when we assume maximum vehicle usage for residents, employees, and tourists for a weekend scenario. A two-lane bridge to the mainland was the primary traffic bottleneck, thereby minimizing the effect of departure times, shadow evacuations, background traffic, boat-based evacuations, and traffic light timing on overall community clearance time. Reducing vehicular demand generally reduced clearance time, whereas improvements to road capacity had mixed results. Finally, failure to recognize non-residential employee and tourist populations in the vehicle demand substantially underestimated clearance time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anguelov D, Dulong C, Filip D et al (2010) Google street view: capturing the world at street level. Computer 43:32–38. doi:10.1109/MC.2010.170

    Article  Google Scholar 

  • Barrett B, Ran B, Pillai R (2000) Developing a dynamic traffic management modeling framework for hurricane evacuation. Transp Res Rec J Transp Res Board 1733:115–121. doi:10.3141/1733-15

    Article  Google Scholar 

  • Chakraborty J, Tobin G, Montz B (2005) Population evacuation: assessing spatial variability in geophysical risk and social vulnerability to natural hazards. Nat Hazards Rev 6:23–33

    Article  Google Scholar 

  • Chen X, Zhan FB (2006) Agent-based modelling and simulation of urban evacuation: relative effectiveness of simultaneous and staged evacuation strategies. J Oper Res Soc 59:25–33. doi:10.1057/palgrave.jors.2602321

    Article  Google Scholar 

  • Chen X, Meaker JW, Zhan FB (2006) Agent-based modeling and analysis of hurricane evacuation procedures for the Florida Keys. Nat Hazards 38:321–338. doi:10.1007/s11069-005-0263-0

    Article  Google Scholar 

  • City of Newport Beach (2010) Tsunami emergency information brochure. http://newportbeachca.gov/home/showdocument?id=9126. Accessed 10 Jan 2014

  • City of Newport Beach (2014) Data catalog. http://www.newportbeachca.gov/government/departments/city-manager-s-office/information-technology-city-division/gis-mapping/data-catalog. Accessed 10 Jan 2014

  • City of Newport Beach Emergency Services Department (2008) Natural hazards mitigation plan: city of newport beach. ftp://newportbeachca.gov/LHMP/NB_DMP_Complete%20pdf.pdf. Accessed 10 Jan 2014

  • Cova TJ (2005) Public safety in the urban-wildland interface: should fire-prone communities have a maximum occupancy? Nat Hazards Rev 6:99–108. doi:10.1061/(ASCE)1527-6988(2005)6:3(99)

    Article  Google Scholar 

  • Cova TJ, Church RL (1997) Modelling community evacuation vulnerability using GIS. Int J Geogr Inf Sci 11:763–784. doi:10.1080/136588197242077

    Article  Google Scholar 

  • Cova TJ, Johnson JP (2002) Microsimulation of neighborhood evacuations in the urban—wildland interface. Environ Plan A 34:2211–2229. doi:10.1068/A34251

    Article  Google Scholar 

  • Cova TJ, Johnson JP (2003) A network flow model for lane-based evacuation routing. Transp Res Part A Policy Pract 37:579–604. doi:10.1016/S0965-8564(03)00007-7

    Article  Google Scholar 

  • Cova TJ, Theobald DM, Norman JB, Siebeneck LK (2011) Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure. GeoJournal 78:273–285. doi:10.1007/s10708-011-9419-5

    Article  Google Scholar 

  • Desmet A, Gelenbe E (2013) Graph and analytical models for emergency evacuation. Future Internet 5:46–55. doi:10.3390/fi5010046

    Article  Google Scholar 

  • Durst D, Lämmel G, Klupfel H (2014) Large-scale multi-modal evacuation analysis with an application to Hamburg. In: Weidmann U, Kirsch U, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2012. Springer International Publishing, Cham, pp 361–369

    Chapter  Google Scholar 

  • Fraser SA, Power WL, Wang X et al (2014) Tsunami inundation in Napier, New Zealand, due to local earthquake sources. Nat Hazards 70:415–445. doi:10.1007/s11069-013-0820-x

    Article  Google Scholar 

  • Frazier TG, Wood N, Yarnal B, Bauer DH (2010) Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Appl Geogr 30:490–505. doi:10.1016/j.apgeog.2010.05.005

    Article  Google Scholar 

  • Gawron C (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int J Mod Phys C 9:393–407. doi:10.1142/S0129183198000303

    Article  Google Scholar 

  • Goto Y, Affan M, Agussabti et al (2012) Tsunami evacuation simulation for disaster education and city planning. J Disaster Res 7:92–101

    Article  Google Scholar 

  • Gwynne S, Galea ER, Owen M et al (1999) A review of the methodologies used in the computer simulation of evacuation from the built environment. Build Environ 34:741–749. doi:10.1016/S0360-1323(98)00057-2

    Article  Google Scholar 

  • Horni A, Nagel K, Axhausen KW (2016) The multi-agent transport simulation MATSim, vol 9. Ubiquity, London

    Book  Google Scholar 

  • Infogroup (2011) Employer database: Infogroup online database. http://referenceusagov.com/Static/Home. Accessed 20 Aug 2013

  • Kim SH, Shekhar S, Min M (2008) Contraflow transportation network reconfiguration for evacuation route planning. IEEE Trans Knowl Data Eng 20:1115–1129. doi:10.1109/Tkde.2007.190722

    Article  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR et al (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252. doi:10.1038/sj.jea.7500165

    Article  Google Scholar 

  • Lämmel G, Grether D, Nagel K (2010a) The representation and implementation of time-dependent inundation in large-scale microscopic evacuation simulations. Transp Res Part C Emerg Technol 18:84–98

    Article  Google Scholar 

  • Lämmel G, Rieser M, Nagel K, et al (2010b) Emergency preparedness in the case of a tsunami—evacuation analysis and traffic optimization for the Indonesian city of Padang. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin, pp 171–182

    Chapter  Google Scholar 

  • Lindell MK, Prater CS (2007) Critical behavioral assumptions in evacuation time estimate analysis for private vehicles: examples from hurricane research and planning. J Urban Plan Dev ASCE 133:18–29. doi:10.1061/(Asce)0733-9488(2007)133:1(18)

    Article  Google Scholar 

  • Linsenmayer M, Turoff S (2008) Municipal parking study—Balboa Island (Memorandum). http://www.newportbeachca.gov/home/showdocument?id=978. Accessed 10 Oct 2015

  • Madireddy M, Medeiros DJ, Kumara S (2011) An agent based model for evacuation traffic management. In: Winter simulation conference

  • Mas E, Suppasri A, Imamura F, Koshimura S (2012) Agent-based simulation of the 2011 great east Japan earthquake/tsunami evacuation: an integrated model of tsunami inundation and evacuation. J Nat Disaster Sci 34:41–57. doi:10.2328/jnds.34.41

    Article  Google Scholar 

  • Mas E, Adriano B, Koshimura S (2013) An integrated simulation of tsunami hazard and human evacuation in La Punta, Peru. J Disaster Res 8:285–295

    Article  Google Scholar 

  • Meng Q, Ling H, Cheu RL (2008) Microscopic traffic simulation model-based optimization approach for the contraflow lane configuration problem. J Transp Eng ASCE 134:41–49. doi:10.1061/(Asce)0733-947x(2008)134:1(41)

    Article  Google Scholar 

  • Miller K, Long K (2013) Emergency management response to a warning-level Alaska-source tsunami impacting California. In: Ross SL, Jones LM (eds) The SAFRR (science application for risk reduction) tsunami scenario: US Geological Survey Open-File Report 2013-1170, p 245

  • Murray-Tuite P, Mahmassani HS (2003) Model of household trip-chain sequencing in emergency evacuation. Travel Demand Land Use 1831:21–29

    Google Scholar 

  • Murray-Tuite P, Wolshon B (2013) Evacuation transportation modeling: an overview of research, development, and practice. Transp Res Part C Emerg Technol 27:25–45. doi:10.1016/j.trc.2012.11.005

    Article  Google Scholar 

  • Naghawi H, Wolshon B (2010) Transit-based emergency evacuation simulation modeling. J Transp Saf Secur 2:184–201. doi:10.1080/19439962.2010.488316

    Article  Google Scholar 

  • National Research Council (2011) Tsunami warning and preparedness: an assessment of the US tsunami program and the nation’s preparedness efforts. National Academies Press, Washington

    Google Scholar 

  • Ramm F, Topf J, Chilton S (2010) OpenStreetMap: using and enhancing the free map of the world, 1st edn. UIT Cambridge, Cambridge

    Google Scholar 

  • Ross SL, Jones LM, Miller K, Porter KA, Wein A, Wilson RI, Bahng B, Barberopoulou A, Borrero JC, Brosnan DM, Bwarie JT, Geist EL, Johnson LA, Kirby SH, Knight WR, Long K, Lynett P, Mortensen CE, Nicolsky DJ, Perry SC, Plumlee GS, Real CR, Ryan K, Suleimani E, Thio H, Titov VV, Whitmore PM, Wood NJ (2013) SAFRR (science application for risk reduction) tsunami scenario—executive summary and introduction: US geological survey open-file report 2013-1170—a. In: Ross SL, Jones LM (eds) The SAFRR (science application for risk reduction) tsunami scenario: US geological survey open-file report 2013-1170, p 17. http://pubs.usgs.gov/of/2013/1170/a/

  • Sheffi Y, Mahmassani H, Powell WB (1982) A transportation network evacuation model. Transp Res Part A Policy Pract 16:209–218. doi:10.1016/0191-2607(82)90022-X

    Article  Google Scholar 

  • Sorensen J, Vogt B (2006) Interactive emergency evacuation guidebook. Department of Homeland Security, Washington

    Google Scholar 

  • State of California, California State Transportation Agency, Department of Transportation, Division of Traffic Operators (2014) 2014 Traffic volumes on California state highways

  • Tamminga G, Tu HZ, Daamen W, Hoogendoorn S (2011) Influence of departure time spans and corresponding network performance on evacuation time. Transp Res Rec 2234:89–96. doi:10.3141/2234-10

    Article  Google Scholar 

  • Taubenböck H, Goseberg N, Setiadi N et al (2009) “Last-Mile” preparation for a potential disaster—interdisciplinary approach towards tsunami early warning and an evacuation information system for the coastal city of Padang, Indonesia. Nat Hazards Earth Syst Sci 9:1509–1528. doi:10.5194/nhess-9-1509-2009

    Article  Google Scholar 

  • US Census Bureau (2015) American FactFinder: US Census Bureau web site. http://factfinder2.census.gov. Accessed 1 Jan 2015

  • US Department of Agriculture (2011) Geospatial data gateway. https://gdg.sc.egov.usda.gov/. Accessed 1 Jan 2015

  • Wang H, Mostafizi A, Cramer LA et al (2016) An agent-based model of a multimodal near-field tsunami evacuation: decision-making and life safety. Transp Res Part C Emerg Technol 64:86–100. doi:10.1016/j.trc.2015.11.010

    Article  Google Scholar 

  • Wilson RI, Miller KM (2014) Tsunami emergency response playbooks and FASTER tsunami height calculation: background information and guidance for use. California geological survey special report 236

  • Wilson R, Barberopoulou A, Borrero J et al (2010) Development of new databases for tsunami hazard analysis in California. In: Lee WH, Kirby S, Diggles M (eds) Program and abstracts of the 2nd tsunami source workshop, p 33

  • Wilson RI, Admire AR, Borrero JC et al (2013) Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure Appl Geophys 170:1127–1147. doi:10.1007/s00024-012-0527-z

    Article  Google Scholar 

  • Wood NJ, Schmidtlein MC (2013) Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety. Nat Hazards 65:1603–1628. doi:10.1007/s11069-012-0434-8

    Article  Google Scholar 

  • Wood NJ, Burton C, Cutter SL (2009) Community variations in social vulnerability to Cascadia-related tsunamis in the US Pacific Northwest. Nat Hazards 52:369–389. doi:10.1007/s11069-009-9376-1

    Article  Google Scholar 

  • Wood NJ, Ratliff J, Peters J (2012) Community exposure to tsunami hazards in California. US geological survey scientific investigations report 2012-5222, p 49

  • Wood NJ, Ratliff J, Peters J, Shoaf K (2013) Population vulnerability and evacuation challenges in California for the SAFRR tsunami scenario. In: The SAFRR (science application for risk reduction) tsunami scenario. US geological survey open-file report 2013-1170, p 50 (Chap. I)

  • Zeigler DJ, Brunn SD, Johnson JH (1981) Evacuation from a nuclear technological disaster. Geogr Rev 71:1–16. doi:10.2307/214548

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the US Geological Survey (USGS) Land Change Science Program. We thank Mara Tongue of the USGS, and anonymous journal reviewers for their insightful reviews of earlier versions of the article. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Henry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, K.D., Wood, N.J. & Frazier, T.G. Influence of road network and population demand assumptions in evacuation modeling for distant tsunamis. Nat Hazards 85, 1665–1687 (2017). https://doi.org/10.1007/s11069-016-2655-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2655-8

Keywords

Navigation