Skip to main content

Advertisement

Log in

Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The spatial and temporal distribution of forest fires displays a complex pattern which strongly influences the forest landscape and the neighbouring anthropogenic development. Statistical methods developed for spatio-temporal stochastic point processes can be employed to find a structure, detect over-densities and trends in forest fire risk and address towards prevention and forecasting measures. The present study considers the Portuguese mapped burnt areas official geodatabase resulting from interpreted satellite measurements, covering the period 1990–2013. The main goal is to detect whether space and time act independently or whether, conversely, neighbouring events are also closer in time, interacting to generate clusters. To this purpose, the following statistical methods were applied: (1) the geographically weighted summary statistics, to explore how the average burned area vary locally through the investigated region; (2) the bivariate K-function, to test the space–time interaction and the spatial attraction/independency between fires of different size; and (3) the space–time kernel density, allowing elaborating smoothed density surfaces and representing over-densities of large versus medium versus small fires and on north versus south region. The proposed approach successfully allowed finding and mapping spatio-temporal patterns within this large data series. Specifically, medium fires tend to aggregate around small fires, while large fires aggregate at a larger distance and longer times, indicating that the return time following these events is longer than for small and medium fires. The density maps shows that hot spots are present almost each year in the northern region, with a higher concentration in the northern areas, while the southern half of the country counts lower surface densities of fires, which are mainly concentrated in the central period (2000–2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acevedo P, Quirós-Fernández F, Casal J, Vicente J (2014) Spatial distribution of wild boar population abundance: basic information for spatial epidemiology and wildlife management. Ecol Ind 36:594–600. doi:10.1016/j.ecolind.2013.09.019

    Article  Google Scholar 

  • Altman N, Léger C (1995) Bandwidth selection for kernel distribution function estimation. J Stat Plan Inference 46:195–214

    Article  Google Scholar 

  • Amraoui M, Pereira MG, Dacamara CC, Calado TJ (2015) Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region. Sci Total Environ 524:32–39

    Article  Google Scholar 

  • Bai S-B, Wang J, Lü G-N, Zhou P-G, Hou S-S, Xu S-N (2010) GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian Segment in the Three Gorges area, China. Geomorphology 115:23–31

    Article  Google Scholar 

  • Bashtannyk DM, Hyndman RJ (2001) Bandwidth selection for kernel conditional density estimation. Comput Stat Data Anal. 36:279–298

    Article  Google Scholar 

  • Bermudez PDZ, Mendes J, Pereira J, Turkman K, Vasconcelos M (2009) Spatial and temporal extremes of wildfire sizes in portugal (1984–2004). Int J Wildland Fire 18:983–991

    Article  Google Scholar 

  • Besag J (1977) Contribution to the discussion of Dr. Ripley‘s paper. J R Stat Soc B 39:193–195

    Google Scholar 

  • Brunsdon C (1995) Estimating probability surfaces for geographical point data: an adaptive kernel algorithm. Comput Geosci 21:877–894

    Article  Google Scholar 

  • Brunsdon C, Fotheringham A, Charlton M (2002) Geographically weighted summary statistics—a framework for localised exploratory data analysis. Comput Environ Urban Syst 26:501–524

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Conoscenti C, di Maggio C, Rotigliano E (2008) GIS analysis to assess landslide susceptibility in a fluvial basin oF NW Sicily (Italy). Geomorphology 94:325–339

    Article  Google Scholar 

  • Console R, Murru M, Lombardi AM (2003) Refining earthquake clustering models. J Geophys Res Solid Earth 1978–2012:108

    Google Scholar 

  • Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes. Springer, New York

    Google Scholar 

  • Dieterich J (1994) A constitutive law for rate of earthquake production and its application to earthquake clustering. J Geophys Res-All Ser 99:2601–2618

    Article  Google Scholar 

  • Diggle PJ (2003) Statistical analysis of spatial point patterns. Hodder Education Publishers, London

    Google Scholar 

  • Erener A, Düzgün H (2012) Landslide susceptibility assessment: What are the effects of mapping unit and mapping method? Environ Earth Sci 66:859–877

    Article  Google Scholar 

  • Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. For Ecol Manag 211:97–108. doi:10.1016/j.foreco.2005.02.010

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester

    Google Scholar 

  • Fuentes-Santos I, Marey-Pérez M, González-Manteiga W (2013) Forest fire spatial pattern analysis in Galicia (NW Spain). J Environ Manag 128:30–42

    Article  Google Scholar 

  • Garavand S, Yaralli N, Sadeghi H (2013) Spatial pattern and mapping fire risk occurrence at natural lands of Lorestan province. Iran J For Poplar Res 21:231–242

    Google Scholar 

  • Genton MG, Butry DT, Gumpertz ML, Prestemon JP (2006) Spatio-temporal analysis of wildfire ignitions in the St Johns River water management district, Florida. Int J Wildland Fire 15:87–97

    Article  Google Scholar 

  • Gitzen RA, Millspaugh JJ, Kernohan BJ (2006) Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J Wildl Manag 70:1334–1344

    Article  Google Scholar 

  • Gollini I, Lu B, Charlton M, Brunsdon C, Harris P (2013) GWmodel: an R package for exploring spatial heterogeneity using geographically weighted models. arxiv preprint arXiv:13060413

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hering AS, Bell CL, Genton MG (2009) Modeling spatio-temporal wildfire ignition point patterns. Environ Ecol Stat 16:225–250

    Article  Google Scholar 

  • Jenks GF, Caspall FC (1971) Error on choroplethic maps: definition, measurement, reduction. Ann As Am Geogr 61:217–244

    Article  Google Scholar 

  • Koutsias N, Kalabokidis KD, Allgöwer B (2004) Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Natl Resour Model 17:359–375

    Article  Google Scholar 

  • Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GISci Remote Sens 47:221–240

    Article  Google Scholar 

  • Koutsias N, Allgöwer B, Kalabokidis K, Mallinis G, Balatsos P, Goldammer JG (2015) Fire occurrence zoning from local to global scale in the European Mediterranean basin: implications for multi-scale fire management and policy. iFor-Biogeosci For 9:195

    Article  Google Scholar 

  • Lee S, Ryu J-H, Kim I-S (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338

    Article  Google Scholar 

  • Leone V, Koutsias N, Martínez J, Vega-García C, Allgöwer B, Lovreglio R (2003) The human factor in fire danger assessment wildland fire danger estimation and mapping the role of remote sensing data. World Scientific Publishing, Singapore

    Google Scholar 

  • Lu B, Harris P, Charlton M, Brunsdon C (2014) The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Inf Sci 17:85–101

    Article  Google Scholar 

  • Martínez-Fernández J, Chuvieco E, Koutsias N (2013) Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natl Hazards Earth Syst Sci 13:311–327

    Article  Google Scholar 

  • Mendes JM, de Zea Bermudez PC, Pereira J, Turkman K, Vasconcelos M (2010) Spatial extremes of wildfire sizes: bayesian hierarchical models for extremes. Environ Ecol Stat 17:1–28

    Article  Google Scholar 

  • Middendorp RS, Vlam M, Rebel KT, Baker PJ, Bunyavejchewin S, Zuidema PA (2013) Disturbance history of a seasonal tropical forest in western thailand: a spatial dendroecological analysis. Biotropica 45:578–586

    Article  Google Scholar 

  • Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science 219:1287–1294

    Article  Google Scholar 

  • Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: an exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14:223–239

    Article  Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • NMBA (2016) National mapping burnt areas. Portugal

  • Oh H-J, Lee S (2011) Landslide susceptibility mapping on Panaon island, Philippines using a geographic information system. Environ Earth Sci 62:935–951

    Article  Google Scholar 

  • Orozco CV, Tonini M, Conedera M, Kanveski M (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires. Geoinformatica 16:653–673

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002a) A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity. Environ Plan A 34:733–754. doi:10.1068/a34110

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002b) A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification tests. Environ Plan A 34:883–904. doi:10.1068/a34133

    Article  Google Scholar 

  • Parajuli J, Haynes KE (2015) The earthquake impact on telecommunications infrastructure in Nepal: a preliminary spatial assessment. GMU school of policy, government, & international affairs research paper

  • Pereira MG, Trigo RM, da Camara CC, Pereira JM, Leite SM (2005) Synoptic patterns associated with large summer forest fires in Portugal. Agric For Meteorol 129:11–25

    Article  Google Scholar 

  • Pereira MG, Calado TJ, Dacamara CC, Calheiros T (2013) Effects of regional climate change on rural fires in Portugal. Clim Change 57:187–200

    Google Scholar 

  • Pereira MG, Aranha J, Amraoui M (2014) Land cover fire proneness in Europe. For Syst 2014(23):13. doi:10.5424/fs/2014233-06115

    Google Scholar 

  • Pereira MG, Caramelo L, Orozco CV, Costa R, Tonini M (2015) Space-time clustering analysis performance of an aggregated dataset: the case of wildfires in Portugal. Environ Model Softw 72:239–249. doi:10.1016/J.ENVSOFT.2015.05.016

    Article  Google Scholar 

  • Piñol J, Beven K, Viegas DX (2005) Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol Model 183:397–409

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing; 2013 document freely available on the internet at: http://www.r-projectorg

  • Ripley BD (1977) Modelling spatial patterns. J R Stat Soc Ser B (Methodol) 39:172–212

    Google Scholar 

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quart J Eng Geol Hydrogeol 38:363–375. doi:10.1144/1470-9236/05-008

    Article  Google Scholar 

  • Rosser N, Lim M, Petley D, Dunning S, Allison R (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res Earth Surf. doi:10.1029/2006jf000642

  • Rowlingson B, Diggle P, Bivand MR (2012) Package ‘splancs’. Gen 14:1

    Google Scholar 

  • Salis M, Ager AA, Finney MA, Arca B, Spano D (2014) Analyzing spatiotemporal changes in wildfire regime and exposure across a Mediterranean fire-prone area. Natl Hazards 71:1389–1418

    Article  Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller J-D (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Natl Hazards Earth Syst Sci 3:423–433. doi:10.5194/nhess-3-423-2003

    Article  Google Scholar 

  • Schmuck G et al (2014) Forest fires in Europe, middle east and north Africa 2013. Publications Office, Luxembourg

    Google Scholar 

  • Schoenberg FP (2003) Multidimensional residual analysis of point process models for earthquake occurrences. J Am Stat Assoc 98:789–795

    Article  Google Scholar 

  • Scotto MG et al (2014) Area burned in Portugal over recent decades: an extreme value analysis. Int J Wildland Fire 23:812–824

    Article  Google Scholar 

  • Silverman BW (1986a) Density estimation for statistics and data analysis. Monographs on statistics and applied probability. Chapman and Hall, London

  • Silverman BW (1986b) Density estimation for statistics and data analysis, vol 26. CRC Press, Boca Roton

    Book  Google Scholar 

  • Sousa PM, Trigo RM, Pereira MG, Bedia J, Gutiérrez JM (2015) Different approaches to model future burnt area in the Iberian Peninsula. Agric For Meteorol 202:11–25

    Article  Google Scholar 

  • Telesca L, Pereira M (2010) Time-clustering investigation of fire temporal fluctuations in Portugal. Natl Hazards Earth Syst Sci 10:661–666

    Article  Google Scholar 

  • Tonini M, Pedrazzini A, Penna I, Jaboyedoff M (2013) Spatial pattern of landslides in Swiss Rhone Valley. Natl Hazards. doi:10.1007/s11069-012-0522-9

    Google Scholar 

  • Trigo RM, Pereira J, Pereira MG, Mota B, Calado TJ, Dacamara CC, Santo FE (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int J Climatol 26:1741–1757

    Article  Google Scholar 

  • Trigo RM, Sousa PM, Pereira MG, Rasilla D, Gouveia CM (2013) Modelling wildfire activity in iberia with different atmospheric circulation weather types. Int J Climatol 36:2761–2778. doi:10.1002/joc.3749

    Article  Google Scholar 

  • Turnbull B, Iwano E, Burnett W, Howe H, Clark L (1990) Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132:S136–S143

    Google Scholar 

  • van den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res 75:721–733. doi:10.1016/J.yqres.2011.02.006

    Article  Google Scholar 

  • Wiegand K, Saltz D, Ward D (2006) A patch-dynamics approach to savanna dynamics and woody plant encroachment—insights from an arid savanna. Perspect Plant Ecol Evol Syst 7:229–242. doi:10.1016/J.PPEES.2005.10.001

    Article  Google Scholar 

  • Zhao K, Popescu S, Meng X, Pang Y, Agca M (2011) Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sens Environ 115:1978–1996. doi:10.1016/j.rse.2011.04.001

    Article  Google Scholar 

  • Zuo R, Agterberg FP, Cheng Q, Yao L (2009) Fractal characterization of the spatial distribution of geological point processes. Int J Appl Earth Obs Geoinform 11:394–402. doi:10.1016/j.jag.2009.07.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by: (1) European Investment Funds by FEDER/COMPETE/POCI–Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958; (2)the Herbette Foundation of the University of Lausanne; (3) the project Interact-Integrative Research in Environment, Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, co-financed by FEDER/NORTE 2020; and (4) National Funds by FCT—Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing fire data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marj Tonini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 182447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonini, M., Pereira, M.G., Parente, J. et al. Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Nat Hazards 85, 1489–1510 (2017). https://doi.org/10.1007/s11069-016-2637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2637-x

Keywords

Navigation