Skip to main content

Advertisement

Log in

Volcanic ash forecast during the June 2011 Cordón Caulle eruption

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We modelled the transport and deposition of ash from the June 2011 eruption from Cordón Caulle volcanic complex, Chile. The modelling strategy, currently under development at the Argentinean Naval Hydrographic Service and National Meteorological Service, couples the weather research and forecasting (WRF/ARW) meteorological model with the FALL3D ash dispersal model. The strategy uses volcanological inputs inferred from satellite imagery, eruption reports and preliminary grain-size data obtained during the first days of the eruption from an Argentinean ash sample collection network. In this sense, the results shown here can be regarded as a quasi-syn-eruptive forecast for the first 16 days of the eruption. Although this article describes the modelling process in the aftermath of the crisis, the strategy was implemented from the beginning of the eruption, and results were made available to the Buenos Aires Volcanic Ash Advisory Centers and other end users. The model predicts ash cloud trajectories, concentration of ash at relevant flight levels, expected deposit thickness and ash accumulation rates at relevant localities. Here, we validate the modelling strategy by comparing results with satellite retrievals and syn-eruptive ground deposit measurements. Results highlight the goodness of the combined WRF/ARW-FALL3D forecasting system and point out the usefulness of coupling both models for short-term forecast of volcanic ash clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bentley MJ (1997) Relative and radiocarbon chronology of two former glaciers in the Chilean Lake District. J Quat Sci 12:25–33

    Article  Google Scholar 

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 18:3621–3624

    Article  Google Scholar 

  • Byun D, Ching J (1999) Science algorithms of the EPA Models-3 community multiscale air quality modeling system. EPA/600/R-99/030. US Environmental Protection Agency, Office of Research and Development, Washington, DC

  • Cahill T, Isacks B (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97:17503–17529

    Article  Google Scholar 

  • Campos A, Moreno H, Muñoz J, Antinao J, Clayton J, Martin M (1998) Área de Futrono-Lago Ranco, Región de los Lagos, Servicio Nacional de Geología y Minería, Mapas Geológicos No.8, 1 mapa escala 1:100.000. Santiago de Chile

  • Carazzo G, Kaminski E, Tait S (2008) On the dynamics of volcanic columns: a comparison of field data with new model of negatively buoyant jets. J Volcanol Geotherm Res 178:94–103

    Article  Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe–Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Article  Google Scholar 

  • Chapron E, Ariztegui D, Mulsow S, Villarosa G, Pino M, Outes V, Juvignié E, Crivelli E (2006) Impact of 1960 major subduction earthquake in Northern Patagonia (Chile, Argentina). Quat Int 158:58–71

    Article  Google Scholar 

  • Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647

    Article  Google Scholar 

  • DeMets C, Gordon R, Argus D, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21:2191–2194

    Article  Google Scholar 

  • Denton GH, Heusser CJ, Lowell TV, Moreno PI, Andersen BG, Heusser LE, Schluchter C, Marchant DR (1999) Interhemispheric linkage of paleoclimate during the last glaciation. Geogr Ann 81:107–153

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a meso scale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Ellrod GP, Connell BH, Hillger DW (2003) Improved detection of airborne volcanic ash using multi-spectral infrared satellite data. J Geophys Res 108:4356

    Article  Google Scholar 

  • Folch A, Jorba O, Viramonte JG (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Natl Hazards Earth Syst Sci 8:927–940

    Article  Google Scholar 

  • Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for volcanic ash transport and deposition. Comput Geosci 35(6):1334–1342

    Article  Google Scholar 

  • Folch A, Osores MS, Pujol G, Collini E, Suaya M (2011) Evaluation of the FALL3D model using WRF–ARW fields for the 2008 Chaitén eruption. European Geosciences Union General Assembly 2011 (EGU 2011)

  • Ganser G (1993) A rational approach to drag prediction of spherical and non spherical particles. Powder Technol 77:143–152

    Article  Google Scholar 

  • Gerlach D, Frey F, Moreno H, López L (1988) Recent volcanism in the Puyehue–Cordón Caulle region, Southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. J Petrol 29:333–382

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Iglesias C, Lobos M, Lago J (2011) Lluvia de cenizas volcánicas en el área valle inferior del río Chubut. Internal Report from Piedra Grande SA

  • Kanamori H, Cipar JJ (1974) Focal process of the great Chilean earthquake, May 22, 1960. Phys Earth Planet Inter 9:128–136

    Article  Google Scholar 

  • Kidder SQ, VonderHaar TH (1995) Satellite meteorology: an introduction. Academic Press, NY

    Google Scholar 

  • Lara LE, Moreno H (2006) Geología del Complejo Volcánico Puyehue–Cordón Caulle, X Región de Los Lagos, Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 1 mapa escala 1:50.000

  • Lara LE, Rodríguez C, Moreno H, Pérez de Arce C (2001) Geocronología K-Ar y geoquímica del volcanismo plioceno superior-pleistoceno de los Andes del Sur (39°–42°S). Rev Geol Chile 28:67–90

    Article  Google Scholar 

  • Lara LE, Mathews S, Pérez C, Moreno H (2003) Evolución morfoestructural del Complejo Volcánico Cordón Caulle (40°S): evidencias geocronológicas 40Ar–39Ar. In Proceedings of the 10th Congreso Geológico Chileno, Concepción, Electronic Files

  • Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: a structural interpretation. J Volcanol Geotherm Res 138:127–138

    Article  Google Scholar 

  • Lara LE, Lavenu A, Cembrano J, Rodríguez C (2006a) Structural controls of volcanism in transversal chains: resheared faults and neotectonics in Cordón Caulle–Puyehue area (40.5°S), Southern Andes. J Volcanol Geotherm Res 158:70–86

    Article  Google Scholar 

  • Lara LE, Moreno H, Naranjo JA, Matthews S, Pérez de Arce C (2006b) Magmatic evolution of the Puyehue–Cordón Caulle volcanic complex (40°S), Southern Andean Volcanic Zone: from shield to unusual rhyolitic fissure volcanism. J Volcanol Geotherm Res 157:343–366

    Article  Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional and transpressional stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, recommendations of the international union of geological sciences, subcommission of the systematics of igneous rocks. Cambridge University Press, ISBN 0-521-66215-X

  • Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schluchter C, Marchant DR, Denton G (1995) Interhemispheric correlation of late Pleistocene glacial events. Science 269:1541–1549

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21

    Article  Google Scholar 

  • Michalakes J, Dudhia J, Gill D, Henderson T, Klemp J, Skamarock W, Wang W (2005) The weather research and forecasting model: software architecture and performance. In: Zwiefhofer W, Mozdzynski G (eds) Proceedings of the eleventh ECMWF workshop on the use of high performance computing in meteorology, World Scientific

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Moreno H (1977) Geología del área volcánica Puyehue-Carrán en los Andes del sur de Chile, (unpublished thesis). Universidad de Chile, Santiago

  • Moreno H, Petit-Breuilh ME (1999) El volcán fisural Cordón Caulle, Andes del Sur (40.5°S): geología general y comportamiento eruptivo histórico. 14th Congreso Geológico Argentino, Actas (vol 2) Salta, Argentina, pp 258–260

  • Osores MS, Pujol G, Collini E, Folch A (2011) Análisis de la dispersión de ceniza volcánica en la atmósfera modelada por el FALL3D para la erupción del volcán Hudson en 1991. Publicación en las actas de la Conferencia Geográfica Regional 2011 (UGI), Santiago de Chile

  • Prata AJ (1989) Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int J Remote Sens 10(4–5):751–761

    Article  Google Scholar 

  • Rose WI, Mayberry GC (2000) Use of GOES thermal infrared imagery for eruption scale measurements, Soufriere Hills, Montserrat. Geophys Res Lett 27:3097–3100

    Article  Google Scholar 

  • Singer B, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. GSA Bull 120(5/6):599–618. doi:10.1130/B26276.1; 12 figures; 3 tables; Data Repository item 2008026

    Google Scholar 

  • Tamaki K (2000) Nuvel 1-A calculation results. Ocean Research Institute. University of Tokio. http://ofgs.ori.u-tokyo.ac.jp/~okino//rate_calc_new.cgi

  • Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litósfera y la segmentación tectónica del margen andino (15–47°S). Rev Geol Chile 30:159–186

    Article  Google Scholar 

  • Villarosa G (2008) Tefrocronología Postglacial de la región de Nahuel Huapi, Patagonia, Argentina. PhD Thesis, Unpublished

  • Villarosa G, Outes V (2008) Rutina de toma de muestras de tefra: Procedimientos para colectar muestras de ceniza. INIBIOMA (CONICET-Universidad Nacional del Comahue) Booklet, 6 pp

  • Villarosa G, Outes V, Hajduk A, Montero EC, Selles D, Fernandez M, Crivelli E (2006) Explosive volcanism during the Holocene in the Upper Limay River Basin: the effects of ashfalls on human societies, Northern Patagonia, Argentina. Quat Int 158:44–57

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by Spanish Research Project ATMOST (CGL2009-10244), the CYTED thematic network CENIZA (410RT0392), and CONICET. AF is grateful to the Ramón y Cajal scientific programme. Simulations have been done at the facilities of the Barcelona Supercomputing Center (BSC-CNS) using the MareNostrum supercomputer. The WRF/ARW-FALL3D modelling system was implemented in a cluster installed at the SMN with funds from the Argentinean project PIDDEF 41/10 which also support partly this research. We thank Diana M. Rodriguez and Silvana K. Bolzi from the HRPT Division (SMN), Claudio Iglesias (Piedra Grande S.A.), Graciela Massaferro (Centro Nacional Patagónico CENPAT–CONICET), Nilda Menegatti (Univ. de la Patagonia San Juan Bosco), Walter Baez (INENCO-CONICET), Rodolfo Ugarte (Yacimientos Petrolíferos Fiscales, YPF), the Nahuel Huapi National Park rangers and Gendarmería from Villa La Angostura that made the Argentinean ash network work, providing the samples for grain-size analyses Dr. Eduardo Gómez (Instituto Argentino de Oceanografía, IADO-CONICET) for grain-size data, and Adrián Moyano for his advice on Mapuche language. Finally, we also thank Ma. Noel Serra, Valeria Outes, Débora Beigt and Ma. Andrea Dzendoletas (INIBIOMA, Universidad Nacional del Comahue). We thank to Comisión de Actividades Espaciales (CONAE) for the COSMO –SKYmed images. The comments from two anonymous referees improved the early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estela Collini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collini, E., Osores, M.S., Folch, A. et al. Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Nat Hazards 66, 389–412 (2013). https://doi.org/10.1007/s11069-012-0492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0492-y

Keywords

Navigation