Skip to main content
Log in

Antidepressant Effects of the Ginsenoside Metabolite Compound K, Assessed by Behavioral Despair Test and Chronic Unpredictable Mild Stress Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Depression is a major social and health problem worldwide. Compound K (CK), an intestinal metabolite of panaxadiol ginsenosides, has been demonstrated to possess significant pharmacological effects on the central nervous system (CNS). Here, we set up this study to investigate the antidepressant effect of CK, and to explore the potential mechanisms underlying this activity. The behavioral despair model and chronic unpredictable mild stress (CUMS) model were established in mice or rats, respectively. Forced swimming test (FST), tail suspension test (TST) and locomotor activity were performed in mice, while the open-field test, food consumption and sucrose preference were assessed in rats. To investigate the underlying mechanism, the levels of endogenous noradrenaline, dopamine (DA), 5-hydroxytryptamine (5-HT) and their metabolites in the prefrontal cortex (PFC) and hippocampus were detected by HPLC coupled with electron detector. The dopamine degradation enzyme (COMT and MAO) expression was measured by western blot. The BDNF and NGF expression were investigated by immunohistochemical staining analysis. The results showed CK (10, 30 mg/kg) intragastric administration for 14 days significantly shorten the immobility time in FST and TST, which could be partially reversed by a D1 receptor antagonist Sch23390. For CUMS rats, CK alleviated the depressant-like behaviors, including decreased food consumption, spontaneous locomotor activity and lower sucrose preference, while WAY-100635, a 5-HT1A receptor antagonist, could attenuate this effect. In addition, CK increased the levels of 5-HT, DA and their metabolites in the PFC and hippocampus of CUMS rats, and could reverse overexpression of MAOB in PFC and hippocampus. CK also increased the GSH and GPx activity in the hippocampus and PFC. The IHC results revealed the BDNF and NGF expression were increased in CK-treated rats. The obtained results indicate that CK exhibits antidepressant effects in rodents, which may be due to the regulation of monoamine neurotransmitter concentration, enhancement of antioxidant capacity, as well as increase of neurotrophin expression in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Delaney KR (2016) Addressing adolescent depression, top-down or bottom-up: as a society we need both. J Child Adolesc Psychiatr Nurs 29:162–163

    Article  PubMed  Google Scholar 

  2. Stack S, Bowman B, Lester D (2012) Suicide by cop in film and society: dangerousness, depression, and justice. Suicide Life Threat Behav 42:359–376

    Article  PubMed  Google Scholar 

  3. Massart R, Mongeau R, Lanfumey L (2012) Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philos Trans R Soc Lond Ser B 367:2485–2494

    Article  CAS  Google Scholar 

  4. Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA (2011) Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 100:330–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sanchez C, Brennum LT, Storustovu S, Kreilgard M, Mork A (2007) Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol Biochem Behav 86:468–476

    Article  PubMed  CAS  Google Scholar 

  6. Buttenschon HN, Foldager L, Elfving B, Poulsen PH, Uher R, Mors O (2015) Neurotrophic factors in depression in response to treatment. J Affect Disord 183:287–294

    Article  PubMed  CAS  Google Scholar 

  7. Serafini G, Hayley S, Pompili M, Dwivedi Y, Brahmachari G, Girardi P, Amore M (2014) Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets? CNS Neurol Disord Drug Targets 13:1708–1721

    Article  PubMed  Google Scholar 

  8. Yamada N, Araki H, Yoshimura H (2011) Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: participation of 5-HT2A receptors. Psychopharmacology 216:589–599

    Article  PubMed  CAS  Google Scholar 

  9. Jiang B, Xiong Z, Yang J, Wang W, Wang Y, Hu ZL, Wang F, Chen JG (2012) Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br J Pharmacol 166:1872–1887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wiklund IK, Mattsson LA, Lindgren R, Limoni C (1999) Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: a double-blind, placebo-controlled trial. Swed Altern Med Group Int J Clin Pharmacol Res 19:89–99

    CAS  Google Scholar 

  11. Tode T, Kikuchi Y, Hirata J, Kita T, Nakata H, Nagata I (1999) Effect of Korean red ginseng on psychological functions in patients with severe climacteric syndromes. Int J Gynaecol Obstet 67:169–174

    Article  PubMed  CAS  Google Scholar 

  12. Wang WN, Yan BX, Xu WD, Qiu Y, Guo YL, Qiu ZD (2015) Highly selective bioconversion of ginsenoside Rb1 to compound K by the mycelium of cordyceps sinensis under optimized conditions. Molecules 20:19291–19309

    Article  PubMed  CAS  Google Scholar 

  13. Joh EH, Lee IA, Jung IH, Kim DH (2011) Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation–the key step of inflammation. Biochem Pharmacol 82:278–286

    Article  PubMed  CAS  Google Scholar 

  14. Igami K, Shimojo Y, Ito H, Miyazaki T, Kashiwada Y (2015) Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury. J Pharm Pharmacol 67:565–572

    Article  PubMed  CAS  Google Scholar 

  15. Lee HU, Bae EA, Han MJ, Kim NJ, Kim DH (2005) Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver Int 25:1069–1073

    Article  PubMed  CAS  Google Scholar 

  16. Shao X, Li N, Zhan J, Sun H, An L, Du P (2015) Protective effect of compound K on diabetic rats. Nat Prod Commun 10:243–245

    PubMed  Google Scholar 

  17. Yuan YL, Guo CR, Cui LL, Ruan SX, Zhang CF, Ji D, Yang ZL, Li F (2015) Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-kappaB signaling pathways in alloxan-induced mice. Drug Des Dev Ther 9:6247–6258

    CAS  Google Scholar 

  18. Liu Y, Jia G, Gou L, Sun L, Fu X, Lan N, Li S, Yin X (2013) Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 104:27–32

    Article  PubMed  CAS  Google Scholar 

  19. Dong H, Gao Z, Rong H, Jin M, Zhang X (2014) beta-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats. Molecules 19:5634–5649

    Article  PubMed  CAS  Google Scholar 

  20. Zhang JC, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Agostinho FR, Reus GZ, Stringari RB, Ribeiro KF, Pfaffenseller B, Stertz L, Panizzutti BS, Kapczinski F, Quevedo J (2011) Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neurosci Lett 497:99–103

    Article  PubMed  CAS  Google Scholar 

  22. Alme MN, Wibrand K, Dagestad G, Bramham CR (2007) Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast 2007:26496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Koike H, Fukumoto K, Iijima M, Chaki S (2013) Role of BDNF/TrkB signaling in antidepressant-like effects of a group II metabotropic glutamate receptor antagonist in animal models of depression. Behav Brain Res 238:48–52

    Article  PubMed  CAS  Google Scholar 

  24. Banerjee R, Ghosh AK, Ghosh B, Bhattacharyya S, Mondal AC (2013) Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human postmortem brain. Clin Med Insights Pathol 6:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Teng J, Chen W, Ge Q, Yang Z, Yu C, Yang Z, Jia W (2010) 20(S)-protopanaxadiol, an active ginseng metabolite, exhibits strong antidepressant-like effects in animal tests. Prog Neuro-psychopharmacol Biol Psychiatry 34:1402–1411

    Article  CAS  Google Scholar 

  26. You Z, Yao Q, Shen J, Gu Z, Xu H, Wu Z, Chen C, Li L (2017) Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. J Nat Med 71:367–379

    Article  PubMed  CAS  Google Scholar 

  27. Rodrigues R, Petersen RB, Perry G (2014) Parallels between major depressive disorder and Alzheimer’s disease: role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol 34:925–949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Talarowska M, Szemraj J, Berk M, Maes M, Galecki P (2015) Oxidant/antioxidant imbalance is an inherent feature of depression. BMC Psychiatry 15:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Maes M, Fisar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology 20:127–150

    Article  PubMed  CAS  Google Scholar 

  30. Pandya CD, Howell KR, Pillai A (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Progr Neuro-psychopharmacol Biol Psychiatry 46:214–223

    Article  CAS  Google Scholar 

  31. Cheng J, Dong S, Yi L, Geng D, Liu Q (2018) Magnolol abrogates chronic mild stress-induced depressive-like behaviors by inhibiting neuroinflammation and oxidative stress in the prefrontal cortex of mice. Int Immunopharmacol 59:61–67

    Article  PubMed  CAS  Google Scholar 

  32. Sulakhiya K, Patel VK, Saxena R, Dashore J, Srivastava AK, Rathore M (2016) Effect of beta vulgaris Linn. Leaves extract on anxiety- and depressive-like behavior and oxidative stress in mice after acute restraint stress. Pharmacogn Res 8:1–7

    Article  CAS  Google Scholar 

  33. Yang XD, Yang YY, Ouyang DS, Yang GP (2015) A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 100:208–220

    Article  PubMed  CAS  Google Scholar 

  34. Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, Zhang LX (2017) Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng C.A. Meyer. J Ethnopharmacol 204:118–124

    Article  PubMed  CAS  Google Scholar 

  35. Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W, Wang Y (2009) Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Progr Neuro-psychopharmacol Biol Psychiatry 33:1417–1424

    Article  CAS  Google Scholar 

  36. Chen L, Dai J, Wang Z, Zhang H, Huang Y, Zhao Y (2014) The antidepressant effects of ginseng total saponins in male C57BL/6N mice by enhancing hippocampal inhibitory phosphorylation of GSK-3beta. Phytother Res 28:1102–1106

    Article  PubMed  CAS  Google Scholar 

  37. Wang J, Flaisher-Grinberg S, Li S, Liu H, Sun L, Zhou Y, Einat H (2010) Antidepressant-like effects of the active acidic polysaccharide portion of ginseng in mice. J Ethnopharmacol 132:65–69

    Article  PubMed  CAS  Google Scholar 

  38. Park JS, Park EM, Kim DH, Jung K, Jung JS, Lee EJ, Hyun JW, Kang JL, Kim HS (2009) Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 209:40–49

    Article  PubMed  CAS  Google Scholar 

  39. Park JS, Shin JA, Jung JS, Hyun JW, Van Le TK, Kim DH, Park EM, Kim HS (2012) Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J Pharmacol Exp Ther 341:59–67

    Article  PubMed  CAS  Google Scholar 

  40. Bae MY, Cho JH, Choi IS, Park HM, Lee MG, Kim DH, Jang IS (2010) Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons. J Neurochem 114:1085–1096

    PubMed  CAS  Google Scholar 

  41. Jang S, Ryu JH, Kim DH, Oh S (2004) Changes of [3H]MK-801, [3H]muscimol and [3H]flunitrazepam binding in rat brain by the prolonged ventricular infusion of transformed ginsenosides. Neurochem Res 29:2257–2266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a grant from the Science and technology project of Jilin provincial administration of traditional Chinese Medicine: 2017160 and National Natural Science Foundation of China (NSFC): 81603324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Guo, Y., Jiang, S. et al. Antidepressant Effects of the Ginsenoside Metabolite Compound K, Assessed by Behavioral Despair Test and Chronic Unpredictable Mild Stress Model. Neurochem Res 43, 1371–1382 (2018). https://doi.org/10.1007/s11064-018-2552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2552-5

Keywords

Navigation