Skip to main content

Advertisement

Log in

Hippocampal Acetylation may Improve Prenatal-Stress-Induced Depression-Like Behavior of Male Offspring Rats Through Regulating AMPARs Expression

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study is to determine the role and mechanism of hippocampal acetylation in prenatal stress (PS) induced depression-like behavior of male offspring rats. PS-induced depression rat model was established. Sucrose preference and forced swim test were used to observe the behavior changes of male offspring rats. Hippocampal acetylation was induced by Trichostatin A injection. Quantitative real-time PCR and Western blot were used to determine the changes of AMPARs in acetylated hippocampus. The behavioral tests proved that AMPA was involved in the PS-induced depression-like behavior in offspring rats. Hippocampal acetylation significantly increased the preference to sucrose of PS-induced offspring rats and reduced the immobile time in forced swimming test, suggesting that acetylation could improve PS-induced depression-like behaviors. In addition, PS inhibited the expression levels of GluA1-3 subunits of AMPARs in the offspring hippocampus, while Hippocampal acetylation could reverse this effect by increasing GluA1-3 expression. PS-induced reduction of GluA1-3 subunits of AMPARs may be an important potential mechanism of offspring depression. Hippocampal acetylation may improve PS-induced offspring depression-like behavior through the enhanced expression of AMPARs (GluA1-3 subunits).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beebe B, Badalamenti A, Jaffe J et al (2008) Distressed mothers and their infants use a less efficient timing mechanism in creating expectancies of each other’s looking patterns. J Psycholinguist Res 37(5):293–307

    Article  PubMed  Google Scholar 

  2. Champagne FA (2010) Epigenetic influence of social experiences across the lifespan. Dev Psychobiol 52(4):299–311

    Article  CAS  PubMed  Google Scholar 

  3. Talge NM, Neal C, Glover V (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48(3–4):245–261

    Article  PubMed  Google Scholar 

  4. Zeng J, Zhu ZL, Li H et al (2015) Maternal stress in gestation: birth outcomes and stress-related hormone response of the neonates. Pediatr Neonatol 56(6):376–381

    Article  PubMed  Google Scholar 

  5. Lixia Guan Ning, Jia Xiaoyan, Zha et al (2013) The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res Bull 99:1–8

    Article  PubMed  Google Scholar 

  6. Jia N, Yang K, Sun Q et al (2010) Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats. Dev Neurobiol 70(2):114–125

    CAS  PubMed  Google Scholar 

  7. Niciu MJ, Ionescu DF, Richards EM et al (2014) Glutamate and its receptors in the pathophysiology and treatment of major depressive disorder. J Neural Transm 121:907–924

    Article  CAS  PubMed  Google Scholar 

  8. Aleksandrova LR, Phillips AG, Wang YT (2017) Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci 42(2):160–175

    Google Scholar 

  9. Beneyto M, Meador-Woodruff JH (2004) Expression of transcripts encoding AMPA receptor subunits and associated postsynaptic proteins in the macaque brain. J Comp Neurol 468:530–554

    Article  CAS  PubMed  Google Scholar 

  10. Wiedholz LM, Owens WA, Horton RE et al (2008) Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13:631–640

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Tizzano JP, Griffey K, Clay M et al (2001) Antidepressant-like actions of an AMPA receptor potentiator (LY392098). Neuropharmacology 40:1028–1033

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Witkin JM, Need AB et al (2003) Enhancement of antidepressant potency by a potentiator of AMPA receptors. Cell Mol Neurobiol 23:419–430

    Article  CAS  PubMed  Google Scholar 

  13. Kllarackal AJ, Kvarta MD, Cammarata E et al (2013) Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic-CA1 synapses. J Neurosci 33:15669–15674

    Article  Google Scholar 

  14. Machado-Vieira R, Henter ID, Zarate CA Jr (2015) New targets for rapid antidepressant action. Prog Neurobiol 152:21–37

    Article  PubMed  Google Scholar 

  15. Ferland Chantelle L., Erin P, Harris et al (2014) Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology 155(8):2942–2952

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sarkar A, Chachra P, Kennedy P et al (2014) Hippocampal Hdac4 contributes to postnatal fluoxetine-evoked depression-like behavior. Neuropsychopharmacology 39(9):2221–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erburu M, Muñoz-Cobo I, Dominguez-Andrés et al (2015) Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity. Eur Neuropsychopharmacol 25(11):2036–2048

    Article  CAS  PubMed  Google Scholar 

  18. Sun H, Jia N, Guan L et al (2013) Involvement of NR1, NR2A different expression in brain regions in anxiety-like behavior of prenatally stressed offspring. Behav Brain Res 15(257):1–7

    Article  CAS  Google Scholar 

  19. Koehl M, Darnaudéry M, Dulluc J, Van Reeth O, Moal ML, Maccari S (1999) Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender. J Neurobiol 40:302–315

    Article  CAS  PubMed  Google Scholar 

  20. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  21. Rodríguez MJ, Robledo P, Andrade C et al (2005) In vivo co-ordinated interactions between inhibitory systems to control glutamate-mediated hippocampal excitability. J Neurochem 95(3):651–661

    Article  PubMed  Google Scholar 

  22. Liu H, Wen LM, Qiao H et al (2013) Modulation of hippocampal glutamate and NMDA/AMPA receptor by homocysteine in chronic unpredictable mild stress-induced rat depression. Sheng Li Xue Bao 65(1):61–71

    CAS  PubMed  Google Scholar 

  23. Inokoshi J, Katagiri M, Arima S et al (1999) Neuronal differentiation of neuro 2a cells by inhibitors of cell cycle progression, trichostatin A and butyrolactone I. Biochem Biophys Res Commun 256(2):372–376

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Florian D, Yan L et al (2013) Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nat Neurosci 16(7):919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guan L, Jia N, Zhao X, Zhang X et al (2013) The involvement of ERK/CREB/Bcl-2 in depression-like behavior in prenatally stressed offspring rats. Brain Res Bull 99:1–8

    Article  CAS  PubMed  Google Scholar 

  26. Jia N, Li Q, Sun H et al (2015) Alterations of group I mGluRs and BDNF associated with behavioral abnormity in prenatally stressed offspring rats. Neurochem Res 40:1074–1082

    Article  CAS  PubMed  Google Scholar 

  27. Sun H, Guan L, Zhu Z et al (2013) Reduced levels of NR1 and NR2A with depression-like behavior in different brain regions in prenatally stressed juvenile offspring. PLoS ONE 8(11):e81775

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chourbaji S, Vogt MA, Fumagalli F et al (2008) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 22(9):3129–3134

    Article  CAS  PubMed  Google Scholar 

  29. Heim C, Binder EB (2012) Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 233:102–111

    Article  PubMed  Google Scholar 

  30. Booij SH, Bos EH, De Jonge P et al (2014) Markers of stress and inflam-mation as potential mediators of the relationship between exercise and depressive symptoms: findings from the trails study. Psychophysiology 52(3):352–358

    Article  PubMed  Google Scholar 

  31. Davis DA, Bortolato M, Godar SC et al (2013) Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS ONE 8:e64128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6:108–118

    Article  CAS  PubMed  Google Scholar 

  33. Maddox SA, Schafe GE, Ressler KJ (2013) Exploring epigenetic regulation of fear memory and biomarkers associated with post-traumatic stress disorder. Front Psychiatry 4:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  35. Nasca C, Zelli D, Bigio B et al (2015) Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc Natl Acad Sci USA 112(48):14960–14965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. An XL, Tai FD (2013) AVP and Glu systems interact to regulate levels of anxiety in BALB/cJ mice. Zool Res 35(4):319–325

    Google Scholar 

  37. Duric V, Banasr M, Stockmeier CA et al (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol 16(1):69–82

    Article  CAS  PubMed  Google Scholar 

  38. Yuen EY, Wei J, Liu W et al (2012) Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73(5):962–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Penn AC, Balik A, Wozny C et al (2012) Activity-mediated AMPA receptor remodeling, driven by alternative splicing in the ligand-binding domain. Neuron 76(3):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Viltart O, Vanbesien-Mailliot CC (2007) Impact of prenatal stress on neuroendocrine programming. Sci World J 7:1493–1537

    Article  CAS  Google Scholar 

  41. Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:19

    Article  PubMed  PubMed Central  Google Scholar 

  42. Welberg LAM, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104(1):71–79

    Article  CAS  PubMed  Google Scholar 

  43. Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28(36):9055–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 81271497) and Medical and Health Technology Development Project of Shandong Province (No. 2015WS0452).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Ethics declarations

Conflict of interest

All authors declare no financial and non-financial competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, J., Zhang, L. et al. Hippocampal Acetylation may Improve Prenatal-Stress-Induced Depression-Like Behavior of Male Offspring Rats Through Regulating AMPARs Expression. Neurochem Res 42, 3456–3464 (2017). https://doi.org/10.1007/s11064-017-2393-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2393-7

Keywords

Navigation