Skip to main content
Log in

Advanced Parental Age Impaired Fear Conditioning and Hippocampal LTD in Adult Female Rat Offspring

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Advanced maternal or paternal age is associated with increased risks of cognitive and emotional disorders. Chronic stress is also a common experience in human life that causes psychiatric diseases. However, the synergistic effects of these two factors on offspring are rarely studied. In the present study, the offspring of both young (3–4 months) and old (12–14 months) rat parents were given CUMS for 21 days at the age of 4 weeks. The effects of advanced parental age and chronic unpredictable mild stress (CUMS) on emotional and cognitive behaviors and the related cellular mechanisms were investigated by using behavioral and electrophysiological techniques. We found that CUMS decreased sucrose consumption, increased anxiety, and impaired learning and memory in offspring from both old and young breeders. However, advanced parental age impaired fear memory and spatial memory mainly in female offspring. The serum corticosterone of female offspring was lower than males, but advanced parental age significantly elevated serum corticosterone in female offspring in response to electrical foot shocks. In addition, hippocampal LTD was severely impaired in female offspring from older parents. Our results indicated that female offspring from older breeders might be more sensitive to stress, and the hippocampal function was more vulnerable. These results might provide experimental basis for the prevention and treatment of advanced parental age related psychiatric disorders in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belloc S, Hazout A, Zini A, Merviel P, Cabry R, Chahine H, Copin H, Benkhalifa M (2014) How to overcome male infertility after 40: influence of paternal age on fertility. Maturitas 78:22–29

    Article  PubMed  Google Scholar 

  2. Kovac JR, Addai J, Smith RP, Coward RM, Lamb DJ, Lipshultz LI (2013) The effects of advanced paternal age on fertility. Asian J Androl 15:723–728

    Article  PubMed  PubMed Central  Google Scholar 

  3. Klemetti R, Gissler M, Sainio S, Hemminki E (2016) At what age does the risk for adverse maternal and infant outcomes increase? Nationwide register-based study on first births in Finland in 2005–2014. Acta Obstet Gynecol Scand 95(12):1368–1375

    Article  PubMed  Google Scholar 

  4. Alio AP, Salihu HM, McIntoshC, August EM, Weldeselasse H, Sanchez E, Mbah AK (2012) The effect of paternal age on fetal birth outcomes. Am J Mens Health 6:427–435

    Article  PubMed  Google Scholar 

  5. Urhoj SK, Jespersen LN, Nissen M, Mortensen LH, Nybo Andersen AM (2014) Advanced paternal age and mortality of offspring under 5 years of age: a register-based cohort study. Human Reprod 29:343–350

    Article  CAS  Google Scholar 

  6. Reichenberg A, Gross R, Sandin S, Susser ES (2010) Advancing paternal and maternal age are both important for autism risk. Am J Public Health 100:772–773

    Article  PubMed  PubMed Central  Google Scholar 

  7. Buizer-Voskamp JE, Laan W, Staal WG, Hennekam EA, Aukes MF, Termorshuizen F, Kahn RS, Boks MP, Ophoff RA (2011) Paternal age and psychiatric disorders: findings from a Dutch population registry. Schizophr Res 129(2–3):128–132

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saha S, Barnett AG, Foldi C, Burne TH, Eyles DW, Buka SL, McGrath JJ (2009) Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med 6:e40

    Article  PubMed  Google Scholar 

  9. Bertram L, Busch R, Spiegl M, Lautenschlager NT, Muller U, Kurz A (1998) Paternal age is a risk factor for Alzheimer disease in the absence of a major gene. Neurogenetics 1:277–280

    Article  CAS  PubMed  Google Scholar 

  10. Chudal R, Gissler M, Sucksdorff D, Lehti V, Suominen A, Hinkka-Yli-SalomakiS, Brown AS, Sourander A (2014) Parental age and the risk of bipolar disorders. Bipolar Disord 16:624–632

    Article  PubMed  Google Scholar 

  11. Jayasekara R, Street J (1978) Parental age and parity in dyslexic boys. J Biosoc Sci 10:255–261

    Article  CAS  PubMed  Google Scholar 

  12. Vestergaard M, Mork A, Madsen KM, Olsen J (2005) Paternal age and epilepsy in the offspring. Eur J Epidemiol 20:1003–1005

    Article  PubMed  Google Scholar 

  13. Malaspina D, Reichenberg A, Weiser M, Fennig S, Davidson M, Harlap S, Wolitzky R, Rabinowitz J, Susser E, Knobler HY (2005) Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr Genet 15:117–125

    Article  PubMed  Google Scholar 

  14. Brown A, Bao Y, McKeague I, Shen L, Schaefer C (2013) Parental age and risk of bipolar disorder in offspring. Psychiatry Res 208(3):225–231

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fergusson DM, Lynskey MT (1993) Maternal age and cognitive and behavioural outcomes in middle childhood. Paediatr Perinat Epidemiol 7:77–91

    Article  CAS  PubMed  Google Scholar 

  16. Tarín JJ, Gómez-Piquer V, Manzanedo C, Miñarro J, Hermenegildo C, Cano A (2003) Long-term effects of delayed motherhood in mice on postnatal development and behavioural traits of offspring. Hum Reprod 18(8):1580–1587

    Article  PubMed  Google Scholar 

  17. McEwen BS (2002) Protective and damaging effects of stress mediators: the good and bad sides of the response to stress. Metabolism 51:2–4

    Article  CAS  PubMed  Google Scholar 

  18. Chiba S, Numakawa T, Ninomiya M, Richards MC., Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuro-psychopharmacol Biol Psychiatry 39: 112–119

    Article  CAS  Google Scholar 

  19. Banerjee R, Hazra S, Ghosh AK, Mondal AC (2014) Chronic administration of bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry Investig 11(3):297–306

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chan J, Guan X, Ni Y, Luo L, Yang L, Zhang P, Zhang J, Chen Y (2017) Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats. Behav Brain Res 321:61–68

    Article  CAS  PubMed  Google Scholar 

  21. Fu J, Xing X, Han M, Xu N, Piao C, Zhang Y, Zheng X (2016) Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats. Neurobiol Learn Mem 128:80–91

    Article  PubMed  Google Scholar 

  22. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun X, Zhang J, Li H, Zhang Z, Yang J, Cui M, Zeng B, Xu T, Cao J, Xu L (2005) Propofol effects on excitatory synaptic efficacy in the CA1 region of the developing hippocampus. Dev Brain Res 157:1–7

    Article  CAS  Google Scholar 

  24. Grippo AJ, Beltz TG, Weiss RM, Johnson AK (2006) The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry 59:309–316

    Article  CAS  PubMed  Google Scholar 

  25. Gronli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R, Portas CM (2006) Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol Biochem Behav 85:842–849

    Article  CAS  PubMed  Google Scholar 

  26. Jeong YH, Park CH, Yoo J, Shin KY, Ahn SM, Kim HS, Lee SH, Emson PC, Suh YH (2006) Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer’s disease model. FASEB J 20:729–731

    CAS  PubMed  Google Scholar 

  27. Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, Lee VM, Trojanowski JQ (2011) Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci 31:14436–14449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohammadi HS, Goudarzi I, Lashkarbolouki T, Abrari K, Elahdadi Salmani M (2014) Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats. Behav Brain Res 270:196–205

    Article  PubMed  Google Scholar 

  29. Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302

    Article  CAS  PubMed  Google Scholar 

  30. Dalla C, Shors TJ (2009) Sex differences in learning processes of classical and operant conditioning. Physiol Behav 97:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7:477–484

    Article  CAS  PubMed  Google Scholar 

  32. Cosgrove KP, Mazure CM, Staley JK (2007) Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 62:847–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhan B, Ma HY, Wang JL, Liu CB (2015) Sex differences in morphine-induced behavioral sensitization and social behaviors in ICR mice. Dongwuxue Yanjiu 36:103–108

    PubMed  PubMed Central  Google Scholar 

  34. Smith DM, Mizumori SJ (2006) Learning-related development of context-specific neuronal responses to places and events: the hippocampal role in context processing. J Neurosci 26:3154–3163

    Article  CAS  PubMed  Google Scholar 

  35. Bao AM, Swaab DF (2010) Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist 16:550–565

    Article  PubMed  Google Scholar 

  36. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  CAS  PubMed  Google Scholar 

  37. Duman RS, Malberg J, Nakagawa S, D’Sa C (2000) Neuronal plasticity and survival in mood disorders. Biol Psychiatry 48:732–739

    Article  CAS  PubMed  Google Scholar 

  38. Czeh B, Michaelis T, WatanabeT, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kajantie E, Phillips DI (2006) The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology 31:151–178

    Article  CAS  PubMed  Google Scholar 

  40. Kudielka BM, Hellhammer DH, Wust S (2009) Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology 34:2–18

    Article  CAS  PubMed  Google Scholar 

  41. Earle TL, Linden W, Weinberg J (1999) Differential effects of harassment on cardiovascular and salivary cortisol stress reactivity and recovery in women and men. J Psychosom Res 46:125–141

    Article  CAS  PubMed  Google Scholar 

  42. Gallucci WT, Baum A, Laue L, Rabin DS, Chrousos GP, Gold PW, Kling MA (1993) Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol 12:420–425

    Article  CAS  PubMed  Google Scholar 

  43. Paris JJ, Franco C, Sodano R, Freidenberg B, Gordis E, Anderson DA, Forsyth JP, Wulfert E, Frye CA (2010) Sex differences in salivary cortisol in response to acute stressors among healthy participants, in recreational or pathological gamblers, and in those with posttraumatic stress disorder. Horm Behav 57:35–45

    Article  CAS  PubMed  Google Scholar 

  44. Handa RJ, Burgess LH, Kerr JE, O’Keefe JA (1994) Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28:464–476

    Article  CAS  PubMed  Google Scholar 

  45. Miao YL, Kikuchi K, Sun QY, Schatten H (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update 15:573–585

    Article  PubMed  Google Scholar 

  46. Jenkins TG, Aston KI, Cairns BR, Carrell DT (2013) Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril 100:945–951

    Article  CAS  PubMed  Google Scholar 

  47. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, Clark AT (2015) DNA demethylation dynamics in the human prenatal germline. Cell 161:1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y et al (2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161:37–1452

    Article  Google Scholar 

  50. Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20:532–543

    Article  PubMed  Google Scholar 

  51. Burris HH, Baccarelli AA, Byun HM, Cantoral A, Just AC, Pantic I, Solano-Gonzalez M, Svensson K, Tamayoy OM, Zhao Y (2015) Offspring DNA methylation of the aryl-hydrocarbon receptor repressor gene is associated with maternal BMI, gestational age, and birth weight. Epigenetics 10:913–921

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT (2014) Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet 10:e1004458

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation of China (NSFC 31460262, 81560234) and the Yunnan Applied Basic Research Projects (2014FB137, 2015HA036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanmei Chen or Jichuan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or other conflicts of interests.

Additional information

Lilu Luo and Tingting Sun have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Sun, T., Guan, X. et al. Advanced Parental Age Impaired Fear Conditioning and Hippocampal LTD in Adult Female Rat Offspring. Neurochem Res 42, 2869–2880 (2017). https://doi.org/10.1007/s11064-017-2306-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2306-9

Keywords

Navigation