Skip to main content
Log in

RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The enteric nervous system (ENS) is involved in the initiation and development of the pathological process of Parkinson’s disease (PD). The effect of rotenone on the ENS may trigger the progression of PD through the central nervous system (CNS). In this study, we used RNA-sequencing (RNA-seq) analysis to examine differential expression genes (DEGs) and pathways induced by in vitro treatment of rotenone in the enteric nervous cells isolated from rats. We identified 45 up-regulated and 30 down-regulated genes. The functional categorization revealed that the DEGs were involved in the regulation of cell differentiation and development, response to various stimuli, and regulation of neurogenesis. In addition, the pathway and network analysis showed that the Mitogen Activated Protein Kinase (MAPK), Toll-like receptor, Wnt, and Ras signaling pathways were intensively involved in the effect of rotenone on the ENS. Additionally, the quantitative real-time polymerase chain reaction result for the selected seven DEGs matched those of the RNA-seq analysis. Our results present a significant step in the identification of DEGs and provide new insight into the progression of PD in the rotenone-induced model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADAMTS1:

A disintegrin and metalloprotease with thrombospondin motifs 1

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

CCK8:

Cell counting kit-8

CNS:

Central nervous system

DEGs:

Differential expression genes

DMEM-HEPES:

Dulbecco’s modified eagle medium-2-hydroxyethyl

DMSO:

Dimethylsulphoxide

EDTA:

Ethylene diamine tetraacetic acid

ENS:

Enteric nervous system

FCS:

Fetal calf serum

FPKM:

Fragment per kilobases of transcript per million fragments mapped

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

MAPK:

Mitogen activated protein kinase

MGP:

Matrix gla protein

MPTP:

1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine

NNAT:

Neuronatin

NPY:

Neuropeptide Y

PD:

Parkinson’s disease

PNS:

Peripheral nervous system

RNA-seq:

RNA-sequencing

ROS:

Reactive oxygen species

RT-PCR:

Real-time polymerase chain reaction

SD rat:

Sprague–Dawley rat

SEM:

Standard errors of mean

SERPINE2:

Serpin peptidase inhibitor, clade E, member 2

TH:

Tyrosine hydroxylase

UGT8:

2-Hydroxyacylsphingosine 1-beta-galactosyltransferase

WISP2:

Wnt1 inducible signaling pathway protein-2

References

  1. Polito L, Greco A, Seripa D (2016) Genetic profile, environmental exposure, and their interaction in Parkinson’s disease. Parkinsons Dis 2016:6465793

    PubMed  PubMed Central  Google Scholar 

  2. Semchuk KM, Love EJ, Lee RG (1992) Parkinson’s disease and exposure to agricultural work and pesticide chemicals. Neurology 42(7):1328–1335

    Article  CAS  PubMed  Google Scholar 

  3. Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17(7):1115–1125

    Article  CAS  PubMed  Google Scholar 

  4. Braak H, de Vos RA, Bohl J, Del TK (2006) Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396(1):67–72

    Article  CAS  PubMed  Google Scholar 

  5. Tasselli M, Chaumette T, Paillusson S et al (2013) Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol Motil 25(3):e183–e193

    Article  CAS  PubMed  Google Scholar 

  6. Greene JG (2014) Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson’s disease. Antioxid Redox Signal 21(4):649–667

    Article  CAS  PubMed  Google Scholar 

  7. Pan-Montojo F, Anichtchik O, Dening Y et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pan-Montojo F, Schwarz M, Winkler C et al (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drolet RE, Cannon JR, Montero L, Greenamyre JT (2009) Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 36(1):96–102

    Article  CAS  PubMed  Google Scholar 

  10. Greene JG, Noorian AR, Srinivasan S (2009) Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218(1):154–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Sun JD, Song LK et al (2015) Environment-contact administration of rotenone: a new rodent model of Parkinson’s disease. Behav Brain Res 294:149–161

    Article  CAS  PubMed  Google Scholar 

  12. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306

    Article  CAS  PubMed  Google Scholar 

  13. Fleming SM, Zhu C, Fernagut PO et al (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187(2):418–429

    Article  CAS  PubMed  Google Scholar 

  14. Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34(2):279–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Guan Q, Wang M et al (2015) Aging-related rotenone-induced neurochemical and behavioral deficits: role of SIRT2 and redox imbalance, and neuroprotection by AK-7. Drug Des Devel Ther 9:2553–2563

    Article  PubMed  PubMed Central  Google Scholar 

  16. Batista LS, Denyer M, Britland S, Javid FA (2007) Development of an intestinal cell culture model to obtain smooth muscle cells and myenteric neurones. J Anat 211(6):819–829

    Article  Google Scholar 

  17. De Paolo S, Salvemini M, Gaudio L, Aceto S (2014) De novo transcriptome assembly from inflorescence of Orchis italica: analysis of coding and non-coding transcripts. PLoS One 9(7):e102155

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang W, Yoshigoe K, Qin X et al (2014) Identification of genes and pathways involved in kidney renal clear cell carcinoma. BMC Bioinform 15(Suppl 17):S2

    Article  Google Scholar 

  19. Wang YZ, Dai MS, Zhang SJ, Shi ZB (2014) Exploring candidate genes for pericarp russet pigmentation of sand pear (Pyrus pyrifolia) via RNA-Seq data in two genotypes contrasting for pericarp color. PLoS One 9(1):e83675

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun S, Xuan F, Ge X, Fu H, Zhu J, Zhang S (2014) Identification of differentially expressed genes in hepatopancreas of oriental river prawn, Macrobrachium nipponense exposed to environmental hypoxia. Gene 534(2):298–306

    Article  CAS  PubMed  Google Scholar 

  21. Karunakaran S, Ravindranath V (2009) Activation of p38 MAPK in the substantia nigra leads to nuclear translocation of NF-kappaB in MPTP-treated mice: implication in Parkinson’s disease. J Neurochem 109(6):1791–1799

    Article  CAS  PubMed  Google Scholar 

  22. Williamson CM, Beechey CV, Ball ST et al (1998) Localisation of the imprinted gene neuronatin, Nnat, confirms and refines the location of a second imprinting region on mouse chromosome 2. Cytogenet Cell Genet 81(1):73–78

    Article  CAS  PubMed  Google Scholar 

  23. Joseph RM (2014) Neuronatin gene: Imprinted and misfolded: studies in Lafora disease, diabetes and cancer may implicate NNAT-aggregates as a common downstream participant in neuronal loss. Genomics 103(2–3):183–188

    Article  CAS  PubMed  Google Scholar 

  24. Braak H, Rub U, Gai WP, Del TK (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna) 110(5):517–536

    Article  CAS  Google Scholar 

  25. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292(2):C641–C657

    Article  CAS  PubMed  Google Scholar 

  26. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12(3):94–101

    Article  CAS  PubMed  Google Scholar 

  27. Costantino-Ceccarini E, Poduslo JF (1989) Regulation of UDP-galactose:ceramide galactosyltransferase and UDP-glucose:ceramide glucosyltransferase after crush and transection nerve injury. J Neurochem 53(1):205–211

    Article  CAS  PubMed  Google Scholar 

  28. Bosio A, Binczek E, Stoffel W (1996) Molecular cloning and characterization of the mouse CGT gene encoding UDP-galactose ceramide-galactosyltransferase (cerebroside synthetase). Genomics 35(1):223–226

    Article  CAS  PubMed  Google Scholar 

  29. Wirthensohn T, Schoeberl P, Ghosh U, Fuchs W (2009) Pilot plant experiences using physical and biological treatment steps for the remediation of groundwater from a former MGP site. J Hazard Mater 163(1):43–52

    Article  CAS  PubMed  Google Scholar 

  30. Li R, Li X, Zhou M, Han N, Zhang Q (2012) Quantitative determination of matrix Gla protein (MGP) and BMP-2 during the osteogenic differentiation of human periodontal ligament cells. Arch Oral Biol 57(10):1408–1417

    Article  CAS  PubMed  Google Scholar 

  31. Marulanda J, Gao C, Roman H, Henderson JE, Murshed M (2013) Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice. Bone 57(2):499–508

    Article  CAS  PubMed  Google Scholar 

  32. Fujita D, Terada S, Ishizu H et al (2003) Immunohistochemical examination on intracranial calcification in neurodegenerative diseases. Acta Neuropathol 105(3):259–264

    CAS  PubMed  Google Scholar 

  33. Hannula MJ, Myohanen TT, Tenorio-Laranga J, Mannisto PT, Garcia-Horsman JA (2013) Prolyl oligopeptidase colocalizes with alpha-synuclein, beta-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson’s and Alzheimer’s diseases. Neuroscience 242:140–150

    Article  CAS  PubMed  Google Scholar 

  34. Lorenzl S, Calingasan N, Yang L et al (2004) Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med 5(2):119–132

    Article  CAS  PubMed  Google Scholar 

  35. Lee EJ, Woo MS, Moon PG et al (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185(1):615–623

    Article  CAS  PubMed  Google Scholar 

  36. Reglodi D, Renaud J, Tamas A et al (2015) Novel tactics for neuroprotection in Parkinson’s disease: role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol. doi:10.1016/j.pneurobio.2015.10.004

    PubMed  Google Scholar 

  37. Decressac M, Pain S, Chabeauti PY et al (2012) Neuroprotection by neuropeptide Y in cell and animal models of Parkinson’s disease. Neurobiol Aging 33(9):2125–2137

    Article  CAS  PubMed  Google Scholar 

  38. Ji J, Jia S, Ji K, Jiang WG (2014) Wnt1 inducible signalling pathway protein-2 (WISP2/CCN5): roles and regulation in human cancers (review). Oncol Rep 31(2):533–539

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was Supported by National Major Scientific and Technological Special Project for Significant New Drugs Development (2014ZX09102043-003), National Natural Science Foundation of China (No. 81371403, 81671273, 81171204, and 30772280), Shanghai Science and Technology Commission (No. 13JC1401102), the Project of Shanghai Municipal Education Commission of China (No. 14YZ046), the Projects of Shanghai Municipal Health and Family Planning Commission of China (No. 20124219 and 20134049), and the Project of Shanghai Jiao Tong University of China (No. YG2013MS22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjing Jin.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Qiang Guan and Xijin Wang have contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Q., Wang, X., Jiang, Y. et al. RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways. Neurochem Res 42, 572–582 (2017). https://doi.org/10.1007/s11064-016-2112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2112-9

Keywords

Navigation