Skip to main content

Advertisement

Log in

Altered Cerebrospinal Fluid Concentrations of TGFβ1 in Patients with Drug-Resistant Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Transforming growth factor beta (TGFβ) signaling participates in pathogenesis of epilepsy. TGFβ1, as a transmitter of TGFβ signaling, might be a useful marker for predicting the prognosis of patients with epilepsy. The present study aimed to measure TGFβ1 level in the cerebrospinal fluid (CSF) of patients with drug-resistant epilepsy and non-resistant epilepsy. A total of 43 patients with epilepsy were recruited, 28 were non-resistant epilepsy subgroup, 15 drug-resistant epilepsy subgroup. 11 patients with intracranial infection and 11 individuals with primary headache were used as controls. The concentration of CSF and serum TGFβ1 was measured by enzyme-linked immunosorbent assay. The concentration of CSF-TGFβ1 was 209.26 ± 81.07 pg/ml in the drug-resistant epilepsy subgroup, 121.80 ± 40.32 pg/ml in the non-resistant epilepsy subgroup, 552.17 ± 456.20 pg/ml in intracranial infection control, 133.80 ± 68.55 pg/ml in headache control, respectively. TGFβ1 level was significantly increased in the drug-resistant epilepsy subgroup compared to the non-resistant epilepsy subgroup. TGFβ1 level in intracranial infection control was higher than that in the non-resistant epilepsy subgroup. There was no statistically difference of CSF-TGFβ1 between the non-resistant epilepsy subgroup and headache controls, between the resistant epilepsy subgroup and intracranial infection controls. TGFβ levels are increased in the CSF of patients with drug-resistant epilepsy. High CSF-TGFβ1 levels may be a potential screening biomarker of antiepileptic drug resistance in patients with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heinemann U, Kaufer D, Friedman A (2012) Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia 60:1251–1257

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, Chan A, Dermietzel R, Faustmann PM, Hinkerohe D, Prochnow N (2011) Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol 162:491–507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D (2009) Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci 29:8927–8935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A (2007) TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130:535–547

    Article  PubMed  Google Scholar 

  5. Lu Y, Xue T, Yuan J, Li Y, Wu Y, Xi Z, Xiao Z, Chen Y, Wang X (2009) Increased expression of TGFbeta type I receptor in brain tissues of patients with temporal lobe epilepsy. Clin Sci 117:17–22

    Article  PubMed  CAS  Google Scholar 

  6. Quirico-Santos T, Meira ID, Gomes AC, Pereira VC, Pinto M, Monteiro M, Souza JM, Alves-Leon SV (2013) Resection of the epileptogenic lesion abolishes seizures and reduces inflammatory cytokines of patients with temporal lobe epilepsy. J Neuroimmunol 254:125–130

    Article  PubMed  CAS  Google Scholar 

  7. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471

    Article  PubMed  CAS  Google Scholar 

  8. Morita N, Takumi T, Kiyama H (1996) Distinct localization of two serine-threonine kinase receptors for activin and TGF-beta in the rat brain and down-regulation of type I activin receptor during peripheral nerve regeneration. Brain Res Mol Brain Res 42:263–271

    Article  PubMed  CAS  Google Scholar 

  9. Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44:613–625

    Article  PubMed  CAS  Google Scholar 

  10. Slotkin TA, Wang XF, Symonds HS, Seidler FJ (1997) Expression of mRNAs coding for the transforming growth factor-beta receptors in brain regions of euthyroid and hypothyroid neonatal rats and in adult brain. Brain Res Dev Brain Res 99:61–65

    Article  PubMed  CAS  Google Scholar 

  11. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  12. Javelaud D, Mauviel A (2004) Mammalian transforming growth factor betas: smad signaling and physiopathological roles. Int J Biochem Cell Biol 36:1161–1165

    Article  PubMed  CAS  Google Scholar 

  13. Bø SH, Davidsen EM, Gulbrandsen P, Dietrichs E, Bovim G, Stovner LJ, White LR (2009) Cerebrospinal fluid cytokine levels in migraine, tension-type headache and cervicogenic headache. Cephalalgia 29:365–372

    Article  PubMed  Google Scholar 

  14. Douglas MR, Daniel M, Lagord C, Akinwunmi J, Jackowski A, Cooper C, Berry M, Logan A (2009) High CSF transforming growth factor beta levels after subarachnoid hemorrhage: association with chronic communicating hydrocephalus. J Neurol Neurosurg Psychiatry 80:545–550

    Article  PubMed  CAS  Google Scholar 

  15. Das A, Wallace GC 4th, Holmes C, McDowell ML, Smith JA, Marshall JD, Bonilha L, Edwards JC, Glazier SS, Ray SK, Banik NL (2012) Hippocampal tissue of patients with refractory temporal lobe epilepsy is associated with astrocyte activation, inflammation, and altered expression of channels and receptors. Neuroscience 220:237–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Peng X, Zhang X, Wang L, Zhu Q, Luo J, Wang W, Wang X (2011) Gelsolin in cerebrospinal fluid as a potential biomarker of epilepsy. Neurochem Res 36:2250–2258

    Article  PubMed  CAS  Google Scholar 

  17. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A (2014) Losartan prevents acquired epilepsy via TGF-β signaling suppression. Ann Neurol 75:864–875

    Article  PubMed  CAS  Google Scholar 

  18. Li LY, Li JL, Zhang HM, Yang WM, Wang K, Fang Y, Wang Y (2013) TGFβ1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. J Mol Neurosci 50:109–123

    Article  PubMed  CAS  Google Scholar 

  19. Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T (2012) Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol 72:82–90

    Article  PubMed  Google Scholar 

  20. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    Article  PubMed  CAS  Google Scholar 

  21. Bobr Al, Igyarto BZ, Haley KM, Li MO, Flavell RA, Kaplan DH (2012) Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc Natl Acad Sci U S A 109:10492–10497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ (2007) Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med 204:2545–2552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Dambach H, Hinkerohe D, Prochnow N, Stienen MN, Moinfar Z, Haase CG, Hufnagel A, Faustmann PM (2014) Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia 55:184–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants from National Key Clinical Specialties Construction Program of China (No. [2013]544); the Key Project of Chinese Ministry of Education (210182); Natural Science Foundation Project of Chongqing Science and Technology Commission (cstc2013jcyjA10013); the Key Project of Chongqing Municipal Health Bureau (2012-1-010), and Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ120302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Zou, Y., Du, Y. et al. Altered Cerebrospinal Fluid Concentrations of TGFβ1 in Patients with Drug-Resistant Epilepsy. Neurochem Res 39, 2211–2217 (2014). https://doi.org/10.1007/s11064-014-1422-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1422-z

Keywords

Navigation