Skip to main content
Log in

Characterization of Basal and Morphine-Induced Uridine Release in the Striatum: An In Vivo Microdialysis Study in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Uridine, a pyrimidine nucleoside, has been proposed to be a potential signaling molecule in the central nervous system. The understanding of uridine release in the brain is therefore of fundamental importance. The present study was performed to determine the characteristics of basal and morphine-induced uridine release in the striatum of freely moving mice by using the microdialysis technique. To ascertain whether extracellular uridine was derived from neuronal release, the following criteria were applied: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade and (c) removal of extracellular Ca2+. Uridine levels were not greatly affected by infusion of tetrodotoxin (TTX) and were unaffected by either Ca2+-free medium or in the presence of EGTA (a calcium chelator), suggesting that basal extracellular uridine levels were maintained mainly by non-vesicular release mechanisms. In addition, both systemic and local application of morphine increased striatal uridine release. The morphine-induced release was reversed by naloxone pretreatment, but was unaffected by TTX or EGTA infusion. Moreover, co-administration of morphine and nitrobenzylthioinosine (NBTI, an inhibitor of nucleotide transporter) produced increases of uridine levels similar to that produced by NBTI or morphine alone, suggesting a nucleotide transporter mechanism involved. Taken together, these findings suggest that morphine produces a μ-opioid receptor-mediated uridine release via nucleoside transporters in a TTX- and calcium-independent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamamoto T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y (2011) Biochemistry of uridine in plasma. Clin Chim Acta 412:1712–1724

    Article  PubMed  CAS  Google Scholar 

  2. Dobolyi A, Juhasz G, Kovacs Z, Kardos J (2011) Uridine function in the central nervous system. Curr Top Med Chem 11:1058–1067

    Article  PubMed  CAS  Google Scholar 

  3. Kimura T, Ho IK, Yamamoto I (2001) Uridine receptor: discovery and its involvement in sleep mechanism. Sleep 24:251–260

    PubMed  CAS  Google Scholar 

  4. Kimura-Takeuchi M, Inoue S (1993) Lateral preoptic lesions void slow-wave sleep enhanced by uridine but not by muramyl dipeptide in rats. Neurosci Lett 157:17–20

    Article  PubMed  CAS  Google Scholar 

  5. Kimura-Takeuchi M, Inoue S (1993) Differential sleep modulation by sequentially administered muramyl dipeptide and uridine. Brain Res Bull 31:33–37

    Article  PubMed  CAS  Google Scholar 

  6. Zhao Q, Marolewski A, Rusche JR, Holmes GL (2006) Effects of uridine in models of epileptogenesis and seizures. Epilepsy Res 70:73–82

    Article  PubMed  CAS  Google Scholar 

  7. Roberts CA, Kreisman NR, Waltman M (1974) Uridine anticonvulsant effects: selective control of nucleoside incorporation in experimental epilepsy. Epilepsia 15:479–500

    Article  PubMed  CAS  Google Scholar 

  8. Peters GJ, Van Groeningen CJ, Laurensse EJ, Lankelma J, Leyva A, Pinedo HM (1987) Uridine-induced hypothermia in mice and rats in relation to plasma and tissue levels of uridine and its metabolites. Cancer Chemother Pharmacol 20:101–108

    Article  PubMed  CAS  Google Scholar 

  9. Peters GJ, Van Groeningen CJ, Laurensse E, Kraal I, Leyva A, Lankelma J, Pinedo HM (1987) Effect of pyrimidine nucleosides on body temperatures of man and rabbit in relation to pharmacokinetic data. Pharm Res 4:113–119

    Article  PubMed  CAS  Google Scholar 

  10. Holguin S, Martinez J, Chow C, Wurtman R (2008) Dietary uridine enhances the improvement in learning and memory produced by administering DHA to gerbils. FASEB J 22:3938–3946

    Article  PubMed  CAS  Google Scholar 

  11. Dobolyi A, Szikra T, Kekesi AK, Kovacs Z, Juhasz G (1999) Uridine is released by depolarization and inhibits unit activity in the rat hippocampus. Neuroreport 10:3049–3053

    Article  PubMed  CAS  Google Scholar 

  12. Kardos J, Kovacs I, Szarics E, Kovacs R, Skuban N, Nyitrai G, Dobolyi A, Juhasz G (1999) Uridine activates fast transmembrane Ca2+ ion fluxes in rat brain homogenates. Neuroreport 10:1577–1582

    Article  PubMed  CAS  Google Scholar 

  13. Dobolyi A, Reichart A, Szikra T, Nyitrai G, Kekesi KA, Juhasz G (2000) Sustained depolarisation induces changes in the extracellular concentrations of purine and pyrimidine nucleosides in the rat thalamus. Neurochem Int 37:71–79

    Article  PubMed  CAS  Google Scholar 

  14. Slezia A, Kekesi AK, Szikra T, Papp AM, Nagy K, Szente M, Magloczky Z, Freund TF, Juhasz G (2004) Uridine release during aminopyridine-induced epilepsy. Neurobiol Dis 16:490–499

    Article  PubMed  CAS  Google Scholar 

  15. Guarneri P, Guarneri R, La Bella V, Piccoli F (1985) Interaction between uridine and GABA-mediated inhibitory transmission: studies in vivo and in vitro. Epilepsia 26:666–671

    Article  PubMed  CAS  Google Scholar 

  16. Myers CS, Napolitano M, Fisher H, Wagner GC (1993) Uridine and stimulant-induced motor activity. Proc Soc Exp Biol Med 204:49–53

    PubMed  CAS  Google Scholar 

  17. Myers CS, Fisher H, Wagner GC (1995) Uridine reduces rotation induced by L-dopa and methamphetamine in 6-OHDA-treated rats. Pharmacol Biochem Behav 52:749–753

    Article  PubMed  CAS  Google Scholar 

  18. Kulkarni A, Mcvaugh W, Lawrence B, Pizzini R, Wolinsky I, Vanburen C, Rudolph F, Dafny N (1997) Nutritional supplementation of nucleotides restores opioid CNS-mediated phenomena in mice. Life Sci 61:1691–1696

    Article  PubMed  CAS  Google Scholar 

  19. Wang TL, Wu CF, Yang JY, Wang F, Song W (2009) Effect of morphine on brain uracil release in mouse striatum detected by microdialysis. Neurosci Lett 457:89–92

    Article  PubMed  CAS  Google Scholar 

  20. Sun JY, Yang JY, Wang F, Wang JY, Song W, Su GY, Dong YX, Wu CF (2011) Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats. Addict Biol 16:540–550

    Article  PubMed  CAS  Google Scholar 

  21. Van Der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  PubMed  Google Scholar 

  22. Westerink BH, Tuntler J, Damsma G, Rollema H, De Vries JB (1987) The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn Schmiedebergs Arch Pharmacol 336:502–507

    Article  PubMed  CAS  Google Scholar 

  23. Drew KL, O’connor WT, Kehr J, Ungerstedt U (1989) Characterization of gamma-aminobutyric acid and dopamine overflow following acute implantation of a microdialysis probe. Life Sci 45:1307–1317

    Article  PubMed  CAS  Google Scholar 

  24. Yamashita T (2012) Ca2+-dependent regulation of synaptic vesicle endocytosis. Neurosci Res 73:1–7

    Article  PubMed  CAS  Google Scholar 

  25. Sarne Y, Fields A, Keren O, Gafni M (1996) Stimulatory effects of opioids on transmitter release and possible cellular mechanisms: overview and original results. Neurochem Res 21:1353–1361

    Article  PubMed  CAS  Google Scholar 

  26. Yawata A, Matsuhashi Y, Kato H, Uemura K, Kusano G, Ito J, Chikuma T, Hojo H (2009) Inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity by cimicifugoside, a triterpenoid from Cimicifuga simplex. Eur J Pharm Sci 38:355–361

    Article  PubMed  CAS  Google Scholar 

  27. Anderson CM, Xiong W, Geiger JD, Young JD, Cass CE, Baldwin SA, Parkinson FE (1999) Distribution of equilibrative, nitrobenzylthioinosine-sensitive nucleoside transporters (ENT1) in brain. J Neurochem 73:867–873

    Article  PubMed  CAS  Google Scholar 

  28. Anderson CM, Baldwin SA, Young JD, Cass CE, Parkinson FE (1999) Distribution of mRNA encoding a nitrobenzylthioinosine-insensitive nucleoside transporter (ENT2) in rat brain. Brain Res Mol Brain Res 70:293–297

    Article  PubMed  CAS  Google Scholar 

  29. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    Article  PubMed  CAS  Google Scholar 

  30. King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  PubMed  CAS  Google Scholar 

  31. Narita M, Mizoguchi H, Nagase H, Suzuki T, Tseng LF (2001) Involvement of spinal protein kinase Cgamma in the attenuation of opioid mu-receptor-mediated G-protein activation after chronic intrathecal administration of [D-Ala2, N-MePhe4, Gly-Ol5]enkephalin. J Neurosci 21:3715–3720

    PubMed  CAS  Google Scholar 

  32. Lu G, Zhou QX, Kang S, Li QL, Zhao LC, Chen JD, Sun JF, Cao J, Wang YJ, Chen J, Chen XY, Zhong DF, Chi ZQ, Xu L, Liu JG (2010) Chronic morphine treatment impaired hippocampal long-term potentiation and spatial memory via accumulation of extracellular adenosine acting on adenosine A1 receptors. J Neurosci 30:5058–5070

    Article  PubMed  CAS  Google Scholar 

  33. Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  PubMed  CAS  Google Scholar 

  34. Coe I, Zhang Y, Mckenzie T, Naydenova Z (2002) PKC regulation of the human equilibrative nucleoside transporter, hENT1. FEBS Lett 517:201–205

    Article  PubMed  CAS  Google Scholar 

  35. Iliodromitis EK, Miki T, Liu GS, Downey JM, Cohen MV, Kremastinos DT (1998) The PKC activator PMA preconditions rabbit heart in the presence of adenosine receptor blockade: is 5′-nucleotidase important? J Mol Cell Cardiol 30:2201–2211

    Article  PubMed  CAS  Google Scholar 

  36. Kiss A, Farah K, Kim J, Garriock RJ, Drysdale TA, Hammond JR (2000) Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Biochem J 352(Pt 2):363–372

    Article  PubMed  CAS  Google Scholar 

  37. Harlan RE, Kailas SR, Tagoe CE, Garcia MM (2004) Morphine actions in the rat forebrain: role of protein kinase C. Brain Res Bull 62:285–295

    Article  PubMed  CAS  Google Scholar 

  38. Ping X, Ma Y, Li Y, Qi C, Sun X, Lv X, Cui C (2012) Essential role of protein kinase C in morphine-induced rewarding memory. Neuropharmacology 62:959–966

    Article  PubMed  CAS  Google Scholar 

  39. Agnati LF, Fuxe K, Ruggeri M, Merlo Pich E, Benfenati F, Volterra V, Ungerstedt U, Zini I (1989) Effects of chronic treatment with uridine on striatal dopamine release and dopamine related behaviours in the absence or the presence of chronic treatment with haloperidol. Neurochem Int 15:107–113

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is partly supported by the Project of Key Laboratory for New Drug Screening, Key Laboratory for Pharmacodynamics, of Liaoning Province, and by the National Key Scientific Project for New Drug Discovery and Development, (2010ZX09401-304), 2010-2012, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Wu, CF., Liu, P. et al. Characterization of Basal and Morphine-Induced Uridine Release in the Striatum: An In Vivo Microdialysis Study in Mice. Neurochem Res 38, 153–161 (2013). https://doi.org/10.1007/s11064-012-0903-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0903-1

Keywords

Navigation