Skip to main content

Advertisement

Log in

An In Vitro Paradigm for Diabetic Cerebral Oedema and its Therapy: A Critical Role for Taurine and Water Channels

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The pathophysiology of cerebral oedema (CE) in diabetic ketoacidosis (DKA) remains enigmatic. We investigated the role of the idiogenic osmol taurine and aquaporin channels in an in vitro model, the SH-SY5Y neuroblastoma cell line, by sequentially mimicking DKA-like hyperglycemia/hypertonicity and hypotonic fluid therapy. Exposure to DKA-like hyperosmolarity led to shrinkage, while hypotonic fluid exposure led to cell swelling and impaired viability. Low sodium compensated in part for elevated glucose, pointing to a critical role for overall osmolality. Taurine, was synthesized and retained intracellularly during DKA-like hypertonicity, and released during hypotonicity, in part mitigating neuronal swelling. Metabolic labeling showed that the rate of taurine release was inadequate to fully prevent neuronal swelling during hypotonic fluid therapy following DKA-like hypertonicity. Under these conditions, Aquaporin4 & 9 channels were respectively down and up-regulated. Our study provides further novel insights into molecular mechanisms contributing to CE in DKA and its therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Edge JA, Ford-Adams ME, Dunger DB (1999) Causes of death in children with insulin dependent diabetes 1990–96. Arch Dis Child 81(4):318–323

    Article  PubMed  CAS  Google Scholar 

  2. Yuen N, Anderson SE, Glaser N, Tancredi DJ, O’Donnell ME (2008) Cerebral blood flow and cerebral edema in rats with diabetic ketoacidosis. Diabetes 57(10):2588–2594

    Article  PubMed  CAS  Google Scholar 

  3. Glaser NS (2009) Cerebral injury and cerebral edema in children with diabetic ketoacidosis: could cerebral ischemia and reperfusion injury be involved? Pediatr Diabetes 10:534–541

    Article  PubMed  CAS  Google Scholar 

  4. Pollock AS, Arieff AI (1980) Abnormalities of cell volume regulation and their functional consequences. Am J Physiol 239(3):F195–F205

    PubMed  CAS  Google Scholar 

  5. Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P (1991) The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Sci 49(9):677–688

    Article  PubMed  CAS  Google Scholar 

  6. Carlotti AP, Bohn D, Halperin ML (2003) Importance of timing of risk factors for cerebral oedema during therapy for diabetic ketoacidosis. Arch Dis Child 88(2):170–173

    Article  PubMed  CAS  Google Scholar 

  7. Cameron FJ, Kean MJ, Wellard RM, Werther GA, Neil JJ, Inder TE (2005) Insights into the acute cerebral metabolic changes associated with childhood diabetes. Diabet Med 22(5):648–653

    Article  PubMed  CAS  Google Scholar 

  8. Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345

    PubMed  CAS  Google Scholar 

  9. Dominy J, Eller S, Dawson R Jr, Papke RL (2004) Building biosynthetic schools: reviewing compartmentation of CNS taurine synthesis. Neurochem Res 29(1):97–103

    Article  PubMed  CAS  Google Scholar 

  10. Bianchi C, Marani L, Marino S, Barbieri M, Nazzaro C, Beani L et al (2007) Serotonin modulation of cell excitability and of [3H]GABA and [3H]D-aspartate efflux in primary cultures of rat cortical neurons. Neuropharmacology 52(3):995–1002

    Article  PubMed  CAS  Google Scholar 

  11. Duck SC, Wyatt DT (1988) Factors associated with brain herniation in the treatment of diabetic ketoacidosis. J Pediatr 113(1 Pt 1):10–14

    Google Scholar 

  12. Harris GD, Fiordalisi I (1994) Physiologic management of diabetic ketoacidemia. A 5-year prospective pediatric experience in 231 episodes. Arch Pediatr Adolesc Med 148(10):1046–1052

    Google Scholar 

  13. Mahoney CP, Vlcek BW, DelAguila M (1999) Risk factors for developing brain herniation during diabetic ketoacidosis. Pediatr Neurol 21(4):721–727

    Article  PubMed  CAS  Google Scholar 

  14. Edge JA, Dunger DB (1994) Variations in the management of diabetic ketoacidosis in children. Diabet Med 11(10):984–986

    Article  PubMed  CAS  Google Scholar 

  15. Russo VC, Kobayashi K, Najdovska S, Baker NL, Werther GA (2004) Neuronal protection from glucose deprivation via modulation of glucose transport and inhibition of apoptosis: a role for the insulin-like growth factor system. Brain Res 1009(1–2):40–53

    Article  PubMed  CAS  Google Scholar 

  16. Durante M, Gialanella G, Grossi GF, Pugliese M (1993) Thickness measurements on living cell monolayers by nuclear methods. Nucl Instrum Methods Phys Res B 73:543–549

    Article  Google Scholar 

  17. Janet T, Ludecke G, Otten U, Unsicker K (1995) Heterogeneity of human neuroblastoma cell lines in their proliferative responses to basic FGF, NGF, and EGF: correlation with expression of growth factors and growth factor receptors. J Neurosci Res 40(6):707–715

    Article  PubMed  CAS  Google Scholar 

  18. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119:203–210

    Article  PubMed  CAS  Google Scholar 

  19. Rivolta I, Panariti A, Lettiero B, Sesana S, Gasco P, Gasco MR, Masserini M, Miserocchi G (2011) Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. J Physiol Pharmacol 62:45–53

    PubMed  CAS  Google Scholar 

  20. Racz B, Reglodi D, Fodor B, Gasz B, Lubics A, Gallyas JF, Roth E, Borsiczky B (2007) Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone 40:1536–1543

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda R, Iwashita K, Sumizawa T, Beppu S, Tabata S, Tajitsu Y, Shimamoto Y, Yoshida K, Furukawa T, Che XF, Yamaguchi T, Ushiyama M, Miyawaki A, Takeda Y, Yamamoto M, Zhao HY, Shibayama Y, Yamada K, Akiyama S (2008) Hyperosmotic stress up-regulates the expression of major vault protein in SW620 human colon cancer cells. Exp Cell Res 314:3017–3026

    Article  PubMed  CAS  Google Scholar 

  22. Loveday D, Heacock AM, Fisher SK (2003) Activation of muscarinic cholinergic receptors enhances the volume-sensitive efflux of myo-inositol from SH-SY5Y neuroblastoma cells. J Neurochem 87(2):476–486

    Article  PubMed  CAS  Google Scholar 

  23. Heacock AM, Kerley D, Gurda GT, VanTroostenberghe AT, Fisher SK (2004) Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors. J Pharmacol Exp Ther 311(3):1097–1104

    Article  PubMed  CAS  Google Scholar 

  24. Edge JA, Jakes RW, Roy Y, Hawkins M, Winter D, Ford-Adams ME et al (2006) The UK case-control study of cerebral oedema complicating diabetic ketoacidosis in children. Diabetologia 49(9):2002–2009

    Article  PubMed  CAS  Google Scholar 

  25. Fisher SK, Domask LM, Roland RM (1989) Muscarinic receptor regulation of cytoplasmic Ca2+ concentrations in human SK-N-SH neuroblastoma cells: Ca2+ requirements for phospholipase C activation. Mol Pharmacol 35(2):195–204

    PubMed  CAS  Google Scholar 

  26. Das J, Ghosh J, Manna P, Sil PC (2010) Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology 269(1):24–34

    Article  PubMed  CAS  Google Scholar 

  27. Bianchi L, Colivicchi MA, Ballini C, Fattori M, Venturi C, Giovannini MG et al (2006) Taurine, taurine analogues, and taurine functions: overview. Adv Exp Med Biol 583:443–448

    Article  PubMed  CAS  Google Scholar 

  28. Anderzhanova E, Saransaari P, Oja SS (2006) Neuroprotective mechanisms of taurine in vivo. Adv Exp Med Biol 583:377–387

    Article  PubMed  CAS  Google Scholar 

  29. Rakotoambinina B, Marks L, Badran AM, Igliki F, Thuillier F, Crenn P et al (2004) Taurine kinetics assessed using [1, 2–13C2]taurine in healthy adult humans. Am J Physiol Endocrinol Metab 287(2):E255–E262

    Article  PubMed  CAS  Google Scholar 

  30. Thurston JH, Hauhart RE, Jones EM, Ater JL (1975) Effects of salt and water loading on carbohydrate and energy metabolism and levels of selected amino acids in the brains of young mice. J Neurochem 24(5):953–957

    Article  PubMed  CAS  Google Scholar 

  31. Harris GD, Lohr JW, Fiordalisi I, Acara M (1993) Brain osmoregulation during extreme and moderate dehydration in a rat model of severe DKA. Life Sci 53(3):185–191

    Article  PubMed  CAS  Google Scholar 

  32. Lien YH, Shapiro JI, Chan L (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85(5):1427–1435

    Article  PubMed  CAS  Google Scholar 

  33. Dawson R Jr, Wallace DR, King MJ (1990) Monoamine and amino acid content in brain regions of Brattleboro rats. Neurochem Res 15(7):755–761

    Article  PubMed  CAS  Google Scholar 

  34. Rose SJ, Bushi M, Nagra I, Davies WE (2000) Taurine fluxes in insulin dependent diabetes mellitus and rehydration in streptozotocin treated rats. Adv Exp Med Biol 483:497–501

    Article  PubMed  CAS  Google Scholar 

  35. Trachtman H, del Pizzo R, Sturman JA (1990) Taurine and osmoregulation. III. Taurine deficiency protects against cerebral edema during acute hyponatremia. Pediatr Res 27(1):85–88

    Google Scholar 

  36. Edge JA, Hawkins MM, Winter DL, Dunger DB (2001) The risk and outcome of cerebral oedema developing during diabetic ketoacidosis. Arch Dis Child 85(1):16–22

    Article  PubMed  CAS  Google Scholar 

  37. Pasantes-Morales H, Franco R, Ordaz B, Ochoa LD (2002) Mechanisms counteracting swelling in brain cells during hyponatremia. Arch Med Res 33(3):237–244

    Article  PubMed  CAS  Google Scholar 

  38. Amiry-Moghaddam M, Nagelhus EA, Agre P, Nielsen S, Ottersen OP (1996) Taurine and water channels are co-localized in renal tubule cells and other tissues. Immunocytochemical studies in rats. Adv Exp Med Biol 403:165–171

    PubMed  CAS  Google Scholar 

  39. Sulyok E, Vajda Z, Doczi T, Nielsen S (2004) Aquaporins and the central nervous system. Acta Neurochir (Wien) 146(9):955–960

    Article  CAS  Google Scholar 

  40. Chu K, Kang DW, Kim DE, Park SH, Roh JK (2002) Diffusion-weighted and gradient echo magnetic resonance findings of hemichorea-hemiballismus associated with diabetic hyperglycemia: a hyperviscosity syndrome? Arch Neurol 59(3):448–452

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by a grant in aid from the Australasian Paediatric Endocrine Group (APEG) sponsored by Novo Nordisk to IHK, VCR, FJC and GAW. IHK was a recipient of a University of Melbourne Research Scholarship. We also wish to thank Miss Elena Andaloro, Centre for Hormone Research, Murdoch Childrens Research Institute, for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Werther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koves, I.H., Russo, V.C., Higgins, S. et al. An In Vitro Paradigm for Diabetic Cerebral Oedema and its Therapy: A Critical Role for Taurine and Water Channels. Neurochem Res 37, 182–192 (2012). https://doi.org/10.1007/s11064-011-0598-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0598-8

Keywords

Navigation