Skip to main content

Advertisement

Log in

MHP-133, a Drug with Multiple CNS Targets: Potential for Neuroprotection and Enhanced Cognition

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2007

Abstract

MHP-133 is one of a novel series of compounds designed to target multiple brain substrates expected to have synergistic actions in the treatment of cognitive and neurodegenerative disorders such as Alzheimer’s disease. The strategy was to develop compounds with multiple targets relevant for enhancing cognition and memory, but avoiding the serious side effects attributed to high potency cholinergic agonists. MHP-133 was shown to interact with subtypes of cholinergic, serotonergic, and imidazoline receptors and to weakly inhibit acetylcholinesterase activity. In vitro, the drug enhanced nerve growth factor (TrkA) receptor expression; it prevented excitotoxicity in a hippocampal slice preparation; and increased the secretion of soluble (non-toxic) amyloid precursor protein. MHP-133 also enhanced cognitive performance by rats and by non-human primate in tasks designed to assess working memory. The results of this study are consistent with the potential use of MHP-133 in the treatment of neurodegenerative disorders such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Morris JC, McKeel DW Jr, Storandt M, Rubin EH, Price JL, Grant EA, Ball MJ, Berg L (1991) Very mild Alzheimer’s disease: informant based clinical, psychometric, and pathologic distinction from normal aging. Neurology 41:469–478

    PubMed  CAS  Google Scholar 

  2. Lockhart BP, Lestage PJ (2003) Cognition enhancing or neuroprotective compounds for the treatment of cognitive disorders: why? when? which? Exp Gerontol 38:119–128

    Article  PubMed  CAS  Google Scholar 

  3. Levey A, Lah J, Goldstein F, Steenland K, Bliwise D (2006) Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin Therapeut 28:991–1001

    Article  Google Scholar 

  4. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  PubMed  CAS  Google Scholar 

  5. Terry AV, Jr. Buccafusco JJ (2003) The cholinergic hypothesis of Alzheimer’s disease: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  PubMed  CAS  Google Scholar 

  6. Engelborghs S, De Deyn PP (1997) The neurochemistry of Alzheimer’s disease. Acta Neurologica Belgica 97:67–84

    PubMed  CAS  Google Scholar 

  7. Myhrer T (1998) Adverse psychological impact, glutamatergic dysfunction, and risk factors for Alzheimer’s disease. Neurosci Biobehav Rev 23:131–139

    Article  PubMed  CAS  Google Scholar 

  8. Riedel G, Micheau J, Lam AGM, Roloff EVL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RGM (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nature Neurosci 2:898–905

    Article  PubMed  CAS  Google Scholar 

  9. Elrod K, Buccafusco JJ, Jackson WJ (1988) Nicotine enhances delayed matching-to-sample performance by primates. Life Sci 43:277–287

    Article  PubMed  CAS  Google Scholar 

  10. Buccafusco JJ, Prendergast M, Terry AV, Jr. Jackson WJ (1996) Cognitive effects of nicotinic cholinergic agonists in non-human primates. Drug Development Res 38:196–203

    Article  CAS  Google Scholar 

  11. Powers JC, Hernandez MA, Thornton S, Glinski J, May SW (1993) Quartenary pyridinium compounds. U.S. Patent 5:206371

  12. Powers JC, Buccafusco JJ, Starks M (1998) Pyridinium compounds. U.S. Patent 5:714,615

  13. Powers JC, Buccafusco JJ, Starks M (1998) Pyridinium compounds. U.S. Patent 5:726,314

  14. Buccafusco JJ, Jr Terry AV (2000) Multiple CNS targets for eliciting beneficial effects on memory and cognition. J Pharmacol Exp Ther 295:438–446

    PubMed  CAS  Google Scholar 

  15. Starks KM, Ortega-Vilain A-C, Buccafusco JJ, Powers JC (1995) Novel pyridinium derivatives as inhibitors for acetylcholinesterase. J Enzym Inhib 10:27–45

    CAS  Google Scholar 

  16. Canney DJ, Zhang M, Doukas PH, Massakowski CJ, Aronstam R, Gattu M, Buccafusco JJ (1998) Characterization of ethyl (3-quinuclidinyl) acetate (EQA) as a ligand for acetylcholine receptors. Life Sci 63:PL 329–PL 336

    Article  CAS  Google Scholar 

  17. Lee RK, Wurtman RJ, Cox AJ, Nitsch RM (1995) Amyloid precursor protein processing is stimulated by metabotropic glutamate receptors. Proc Nat Acad Sci USA 92:8083–8087

    Article  PubMed  CAS  Google Scholar 

  18. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182

    Article  PubMed  CAS  Google Scholar 

  19. Mulholland PJ, Prendergast MA (2002) Post-insult exposure to (+/−) kavain potentiates N-methyl-D-aspartate toxicity in the developing hippocampus. Brain Res 945:106–113

    Article  PubMed  CAS  Google Scholar 

  20. Jonnala RR, Terry. AV, Jr. Buccafusco JJ (2002) Nicotine increases the expression of high affinity nerve growth factor receptors both in vitro and in vivo. Life Sci 70:1543–1554

    Article  PubMed  CAS  Google Scholar 

  21. Dunn MA, Sidell FR (1989) Progress in medical defense against nerve agents. JAMA 262:649–652

    Article  PubMed  CAS  Google Scholar 

  22. Albuquerque EX, Aracava Y, Cintra WM, Brossi A, Schonenberger B, Deshpande SS (1988) Structure-activity relationship of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel complex. Braz J Med Biolog Res 21:1173–1196

    CAS  Google Scholar 

  23. Rowell P (2002) Effects of nicotine on dopaminergic neurotransmission. In: Levin ED (ed) Nicotinic receptors in the nervous system, CRC Press, New York, pp 51–80

    Google Scholar 

  24. Buccafusco JJ, Jr. Terry AV (2002) Nicotine and cognition in young and aged nonhuman primates. In: Levin ED (ed) Nicotinic receptors in the nervous system, CRC Press, New York, pp 179–197

    Google Scholar 

  25. Buccafusco JJ (2004) Neuronal nicotinic receptor subtypes: defining therapeutic targets. Mol Intervent 4:285–295

    Article  CAS  Google Scholar 

  26. Buccafusco JJ, Letchworth SR, Bencherif M, Lippillo PM (2005) Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharmacolog Sci 26:352–360

    Article  CAS  Google Scholar 

  27. Giacobini E (2004) Drugs that target cholinesterses. In: Buccafusco JJ (ed) Cognitive enhancing drugs, Birkhäuser Verlag, Basel, pp 11–36

    Google Scholar 

  28. Terry AV, Jr. Buccafusco JJ, Jackson WJ, Prendergast MA, Fontana DJ, Wong EH, Bonhaus DW, Weller P, Eglen RM (1998) Enhanced delayed matching performance in younger and older macaques administered the 5-HT4 receptor agonist, RS 17017. Psychopharmacology 135:407–415

    Article  PubMed  CAS  Google Scholar 

  29. Eglan RM, Wong EHF, Dumuis A, Bockaert J (1995) Central 5HT4 receptors. Trends Pharmacolog Sci 16:391–398

    Article  Google Scholar 

  30. Picciotto MR, Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53:641–655

    Article  PubMed  CAS  Google Scholar 

  31. Quik M, Kulak JM (2002) Nicotine and nicotinic receptors; relevance to Parkinson’s disease. Neurotoxicology 23:581–594

    Article  PubMed  CAS  Google Scholar 

  32. Virginio C, Giacometti A, Aldegheri L, Rimland JM, Terstappen GC (2002). Pharmacological properties of rat alpha 7 nicotinic receptors expressed in native and recombinant cell systems. Eur J Pharmacol 445:153–161

    Article  PubMed  CAS  Google Scholar 

  33. Avila AM, Davila-Garcia MI, Ascarrunz VS, Xiao Y, Kellar KJ (2003). Differential regulation of nicotinic acetylcholine receptors in PC-12 cells by nicotine and nerve growth factor. Mol Pharmacol 64:974–986

    Article  PubMed  CAS  Google Scholar 

  34. Farias GG, Godoy JA, Hernandez F, Avila J, Fisher A, Inestrosa NC (2004) M1 muscarinic receptor activation protects neurons from beta-amyloid toxicity. A role for Wnt signaling pathway. Neurobiol Disease 17:337–348

    Article  CAS  Google Scholar 

  35. Yang B, Lin H, Xu C, Liu Y, Wang H, Han H, Wang Z (2005) Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem 16:163–174

    Article  PubMed  CAS  Google Scholar 

  36. Fisher A, Brandeis R, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z (2002) AF150(S) and AF267B. M1 Muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19:145–153

    Article  PubMed  CAS  Google Scholar 

  37. Youdim MBH, Buccafusco JJ (2005) CNS targets for multi-functional drugs in the treatment of neurodegenerative diseases. J Neural Transm 112:519–537

    Article  PubMed  CAS  Google Scholar 

  38. Weinreb O, Amit T, Bar-Am O, Sagi Y, Mandel S, Youdim MB (2006) Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transmission Suppl 70:457–765

    Article  CAS  Google Scholar 

  39. Li XD, Arias E, Jonnala RR, Mruthinti S, Buccafusco JJ (2005) Effect of amyloid peptides on the increase in TrkA receptor expression induced by nicotine in vitro and in vivo. J Mol Neurosci 27:325–336

    Article  PubMed  CAS  Google Scholar 

  40. Yogev-Falach M, Bar-Am O, Amit T, Weinreb O, Youdim MB (2006) A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. FASEB J 20:2177–2179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Callaway Foundation of Georgia, by the Medical College of Georgia Alzheimer’s Research Center, and by salary support for JJB from the Veterans Administration Merit Review program. The authors also would like to acknowledge the fine technical assistance provided by Nancy Kille and Laura Shuster. Lastly we would like to thank Professor Moussa B. Youdim for his contributions to the field of novel drug discovery and for many enlightened conversations over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry J. Buccafusco.

Additional information

Special issue dedicated to Dr. Moussa Youdim.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-007-9489-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buccafusco, J.J., Powers, J.C., Hernandez, M.A. et al. MHP-133, a Drug with Multiple CNS Targets: Potential for Neuroprotection and Enhanced Cognition. Neurochem Res 32, 1224–1237 (2007). https://doi.org/10.1007/s11064-007-9294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9294-0

Keywords

Navigation