Skip to main content
Log in

Expansion of Visual Receptive Fields in the Extrastriate Visual Cortex: Dependence on the Trajectory of a Moving Stimulus

  • Published:
Neurophysiology Aims and scope

Regularities of spatial expansion of receptive fields (RFs) of visually sensitive neurons upon application of moving visual images were investigated in the cat extrastriate visual cortex (area 21a). The RF size and their spatial infrastructure were first defined by presentation of stationary flashing stimuli, and horizontal and vertical axes (HA and VA, respectively) of classical RFs were determined. Then the lengths of the above axes were carefully measured by spatial scanning of the RFs with moving visual stimuli. It was found that dynamic expansion of the RF sizes was, as a rule, linked to the trajectory of a moving stimulus across the RF. Stimulus motion along the RF HA resulted in significant extension of this axis but not of the VA, while the its motion along the RF VA usually caused extension of only this axis, while another axis underwent negligible changes. These results demonstrate that spatial expansion of the RFs correlates mainly with the trajectory of stimulus motion across the RF. Such an effect probably results from excitation of the neuron under study by the influences coming from adjacent cortical neural networks. Thus, neural circuits localized outside the RF play a decisive role in modulation of the qualitative and quantitative characteristics of classical RFs, hence ensuring precise central processing of incoming visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. K. Hartline, “Response of single optic nerve fibers of the vertebrate eye to illumination of the retina,” Am. J. Physiol., 121, No. 2, 400-415 (1938).

    Google Scholar 

  2. H. K. Hartline, “The receptive field of optic nerve fibers,” Am. J. Physiol., 130, No. 3, 690-699 (1940).

    Google Scholar 

  3. D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol., 148, No. 3, 574-591 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. D. H. Hubel and T. N. Wiesel. “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol., 160, No. 1, 106-154 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Angelucci, J. B. Levit, J. S. Walton, et al., “Circuits for local and global integration in primary visual cortex,” J. Neurosci., 22, No. 19, 8633-8646 (2002).

    CAS  PubMed  Google Scholar 

  6. J. Lampi, J. S. Anderson, D. C. Gillespi, and G. H. Ferster, “Predication of orientation selectivity from receptive field architecture in simple cells of cat visual cortex,” Neuron, 30, No. 1, 267-274 (2001).

    Google Scholar 

  7. C. Kyser and P. Konig, “Feature selectivity in area 21a of the cat,” NeuroReport, 17, No. 8, 809-812 (2006).

    Article  Google Scholar 

  8. J. M. G. Tsui and C. C. Pack, “Contrast sensitivity of MT receptive field centers and surrounds,” J. Neurophysiol., 106, No. 4, 1888-1900 (2011).

    Article  PubMed  Google Scholar 

  9. B. A. Harutiunian-Kozak, G. G. Grigoryan, J. Kozak, et al., “Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex,” Arch. Ital. Biol., 146, No. 1, 119-130 (2008).

    CAS  PubMed  Google Scholar 

  10. D. K. Khachvankian, J. A. Kozak, A. L. Ghazarian, et al., “Reorganization of receptive fields of cortical field 21a neurons and formation of response to moving visual stimuli,” Neurophysiology, 44, No. 1, 33-41 (2012).

    Article  Google Scholar 

  11. J. J. Pettet and C. D. Gilbert, “Dynamic changes in receptive field size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, No. 17, 8366-8370 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Das and C. D. Gilbert, “Receptive fields expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections,” J. Neurophysiol., 74, No. 2, 779-792 (1995).

    CAS  PubMed  Google Scholar 

  13. U. T. Eysel, D. Eyding, and G. Schweigart, “Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex,” NeuroReport, 9, No. 5, 949-954 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. D. K. Khachvankian, B. A. Harutiunian-Kozak, H. R. Aslanian, et al., “Dynamic changes in receptive field sizes of visually sensitive neurons in extrastriate area 21a,” Electron. J. Nat. Sci., 2, No. 23, 42-46 (2014).

    Google Scholar 

  15. P. O. Bishop, W. Kozak, and G. J. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plane reference, visual field co-ordinates and optics,” J. Physiol., 163, No. 3, 466-502 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R. Fernald and R. Chase, “An improved method for plotting retinal ganglion landmarks and focusing the eyes,” Vision Res., 11, No. 1, 95-96 (1971).

    Article  CAS  PubMed  Google Scholar 

  17. C. Y. Li, P. Ping, Y. X. Zhow, and H. C. Mitzlaff, “Role of the extensive area outside the x-cell receptive field in brightness information transmission,” Vision Res., 31, No. 9, 1529-1540 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. K. Suder, K. Funke, J. Zhao, et al., “Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity,” Exp. Brain. Res., 144, No. 4, 430-444 (2002).

    Article  PubMed  Google Scholar 

  19. D. Eyding, G. Schweigart, and U. T. Eysel, “Spatiotemporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat,” Neuroscience, 112, No. 1, 195-215 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic horizontal and corticotectal connections in cat visual cortex,” J. Neurosci., 9, No. 7, 2432-2442 (1989).

    CAS  PubMed  Google Scholar 

  21. U. Polat and D. Sagi, “Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments,” Vision Res., 33, No. 7, 993-999 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. A. M. Silito, J. Cudeiro, and H. E. Jones, “Always returning: feedback and sensory processing in visual cortex and thalamus,” Trends Neurosci., 29, No. 6, 307-316 (2006).

    Article  Google Scholar 

  23. L. Schwabe, K. Obermayer, A. Angelucchi, and P. C. Bressloff, “The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model,” J. Neurosci., 26, No. 36, 9117-9129 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. K. Khachvankian, A. L. Ghazaryan, B. A. Harutiunian-Kozak, M. M. Momjian or H. R. Aslanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachvankian, D.K., Ghazaryan, A.L., Harutiunian-Kozak, B.A. et al. Expansion of Visual Receptive Fields in the Extrastriate Visual Cortex: Dependence on the Trajectory of a Moving Stimulus. Neurophysiology 49, 122–129 (2017). https://doi.org/10.1007/s11062-017-9640-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9640-z

Keywords

Navigation