Skip to main content
Log in

Effects of a Supernatant of Fetal Neurogenic Cells on Proliferative Activity in Glioma C6 Cell Culture

  • Published:
Neurophysiology Aims and scope

We estimated the effects of a rat fetal neurogenic cell supernatant (RFNCS) on proliferative activity of cultured cells of rat brain glioma (C6 cell line). The RFNCS was obtained from a cell suspension of the brains from rat fetuses (gestation day 14, E14). We added 0.10 mg/ml of RFNCS to the culture medium of experimental cultures and incubated the latter for 48 h. Immunocytochemical staining with respect to the Ki-67 proliferation marker was performed using rabbit monoclonal antibodies against this protein. In glioma C6 cell cultures, we observed degenerating and necrobiotically modified tumor cells with rounded cell bodies and reduction of the processes. Under the action of RFNCS, the mean density of the cells in 10 test fields of vision in experimental cultures (0.04 mm2) became significantly smaller than that in the control (332.0 ± 36.0 vs. 569.5 ± 70.5; P = 0.00026); the mean value of the nuclear/cytoplasmic ratio in malignant cells mildly (insignificantly) decreased (0.28 ± 0.01 vs. 0.32 ± 0.02; P = 0.64) and the share of cells with multiple nucleoli was more than two times smaller (3.53 ± 0.33% and 7.97 ± 0.25%, respectively; P = 0.053). The mitotic index of cultured malignant cells subjected to the action of RFNCS became four times lower (1.10 ± 0.04% vs. 4.90 ± 0.09%; P = 0.009), while the share of malignant cells immunopositive with respect to Ki-67 decreased (10.47 ± 0.91% vs. 27.86 ± ± 2.91%; P = 0.0015). The observed antiproliferative effect of RFNCS confirms the possibility and expedience of the development of complex pathogenetic therapy for malignant tumors of the brain using preparations obtained from fetal neurogenic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. “Cancer in Ukraine, 2013-2014. Morbidity, mortality, and indices of activity of oncologic service,” Byul. Nats. Cancer Register, No. 16, 56-57 (2015).

  2. L. Ampie, E. C. Woolf, and C. Dardis, “Immunotherapeutic advancements for glioblastoma,” Front. Oncol., 5, 1-8 (2015).

    Article  Google Scholar 

  3. Ch. I. Ene and E. C. Holland, “Personalized medicine for gliomas,” Surg. Neurol. Int., 6, No. 1, S89-S95 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu. A. Zozulya, I. G. Vasil’yeva, A. Ya. Glavatskii, et al., “Photodynamic therapy for brain gliomas,” in: Gliomas of the Brain [in Russian], Yu. A. Zozulya (ed.). UIPK, EksOb, Kyiv (2007), pp. 495-501.

    Google Scholar 

  5. I. S. Bryukhovetskii, A. S. Bryukhovetskii, P. V. Mishchenko, et al., “Stem cells in therapy against malignant tumor of the brain: reality and prospects,” Klin. Praktika. No. 4, 45-57 (2013).

  6. P. Achanta, N. I. Sedora Roman, and A. Quiñones-Hinojosa, “Gliomagenesis and the use of neural stem cells in brain tumor treatment,” Anticancer Agents Med. Chem., 10, No. 2, 121-130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A. U. Ahmed, I. V. Ulasov, R. W. Mercer, and M. S. Lesniak, “Maintaining and loading neural stem cells for delivery of oncolytic adenovirus to brain tumors,” Methods Mol. Biol., 797, 97-109 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. M. S. Bovenberg, M. H. Degeling, and B. A. Tannous, “Advances in stem cell therapy against gliomas,” Trends Mol. Med., 19, No. 5, 281-291 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. S. Ito, A. Natsume, S. Shimato, et al., “Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma,” Cancer Gene Ther., 17, No. 5, 299-306 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. S. U. Kim, “Neural stem cell-based gene therapy for brain tumors,” Stem Cell Rev., 7, No. 1, 130-140 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. J. Y. Jeon, J. H. An, S. U. Kim, et al., “Migration of human neural stem cells toward an intracranial glioma,” Exp. Mol. Med., 40, No. 1, 84-91 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Staflin, M. Lindvall, T. Zuchner, and C. Lundberg, “Instructive cross-talk between neural progenitor cells and gliomas,” J. Neurosci. Res., 85, No. 10, 2147-2159 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. K. Staflin, G. Honeth, S. Kalliomaki, et al., “Neural progenitor cell lines inhibit rat tumor growth in vivo,” Cancer Res., 64, No. 15, 5347-5354 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. J. H. Walzlein, M. Synowitz, B. Engels, et al., “The antitumorigenic response of neural precursors depends on subventricular proliferation and age,” Stem Cells, 26, No. 11, 2945-2954 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. N. I. Lisyanyi, G. M. Oleinik, O. V. Markova, et al., “Effect of cerebral cells on growth of tumors under renal capsule in vivo,” in: Immune System of the Brain [in Russian], N. I. Lisyanyi (ed.), VIPOL, Kyiv (1999), pp. 116-135.

    Google Scholar 

  16. V. M. Semenova, V. I. Tsymbalyuk, L. P. Staino, et al., “Study of antitumor properties of different populations of brain cells in culture of neural tissue,” in: Immune System of the Brain [in Russian], N. I. Lisyanyi (ed.), VIPOL, Kyiv (1999), pp. 136-146.

    Google Scholar 

  17. N. I. Lisyanyi, L. D. Liubich, and O. G. Khokhlov, “Study of antitumor action of progenitor neural cells (NC) in rats with experimental glioma of the brain,” Immunol, Allergol., No. 3, 61-66 (2008).

  18. V. M. Semenova, Experimental Morphological Estimate of the Efficacy of Antiblastic Therapy for Gliomas of the Brain [in Russian], Doctoral Thesis, Med. Sci., Kyiv (1992).

  19. H. J. Klassen, K. L. Imfeld, I. I. Kirov, et al., “Expression of cytokines by multipotent neural progenitor cells,” Cytokine, 22, Nos. 3/4, 101-106 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. H. C. Chen, H. I. Ma, H. K. Sytwu, et al., “Neural stem cells secrete factors that promote auditory cell proliferation via a leukemia inhibitory factor signaling pathway,” J. Neurosci. Res., 88, No. 15, 3308-3318 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. J. Liu, C. Götherström, M. Forsberg, et al., “Human neural stem/progenitor cells derived from embryonic stem cells and fetal nervous system present differences in immunogenicity and immunomodulatory potentials in vitro,” Stem Cell Res., 10, No. 3, 325-337 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. L. D. Liubich, V. M. Semenova, and L. P. Stayno, “Influence of rat progenitor neurogenic cells supernatant on glioma 101.8 cells in vitro,” Biopolymers Cell, 31, No. 3, 200-208 (2015).

    Article  Google Scholar 

  23. B. Kaminska, M. Kocyk, and M. Kijewska, “TGF beta signaling and its role in glioma pathogenesis,” Adv. Exp. Med. Biol., 986, 171-187 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. J. Zhang, W. Yang, D. Zhao, et al., “Correlation between TSP-1, TGF-β and PPAR-γ expression levels and glioma microvascular density,” Oncol. Lett., 7, No. 1, 95-100 (2014).

    PubMed  Google Scholar 

  25. A. M. Dubrovska and S. S. Souchelnytskyi, “Low-density microarray analysis of TGFb1-dependent cell cycle regulation in human breast adenocarcinoma MCG7 cell line,” Biopolymers Cell, 30, No. 2, 107-117 (2014).

    Article  CAS  Google Scholar 

  26. D. K. Binder and H. E. Scharfman, “Brain-derived neurotrophic factor,” Growth Factors, 22, No. 3, 123-131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. D. Liubich, V. M. Semenova or T. A. Malysheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liubich, L.D., Semenova, V.M., Malysheva, T.A. et al. Effects of a Supernatant of Fetal Neurogenic Cells on Proliferative Activity in Glioma C6 Cell Culture. Neurophysiology 48, 238–245 (2016). https://doi.org/10.1007/s11062-016-9594-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-016-9594-6

Keywords

Navigation