Skip to main content
Log in

Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To assess impact of volumetric changes in tumour volume post chemoradiotherapy in glioblastoma. Patients managed with chemoradiotherapy between 2008 and 2011 were included. Patients with incomplete MRI sets were excluded. Analyses were performed on post-operative MRI, and MRIs at 1 month (M+1), 3 months (M+3), 5 months (M+5), 7 months (M+7), and 12 months (M+12) post completion of RT. RANO definitions of response were used for all techniques. Modified RANO criteria and two volumetric analysis techniques were used. The two volumetric analysis techniques involved utility of the Eclipse treatment planning software to calculate the volume of delineated tissue: surgical cavity plus all surrounding enhancement (Volumetric) versus surrounding enhancement only (Rim). Retrospective analysis of 49 patients with median survival of 18.4 months. Using Volumetric analysis the difference in MS for patients who had a <5 % increase versus ≥5 % at M+3 was 23.1 versus 15.1 months (p = 0.006), and M+5 was 26.3 versus 15.1 months (p = 0.006). For patients who were classified as progressive disease using modified RANO criteria at M+1 and M+3 there was a difference in MS compared with those who were not (M+1: 13.1 vs. 19.4 months, p = 0.017, M+3: 13.2 vs. 20.1 months, p = 0.096). An increase in the volume of cavity and enhancement of ≥5 % at M+3 and M+5 post RT was associated with reduced survival, suggesting that increases in radiological abnormality of <25 % may predict survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Australian Institute of Health and Welfare (2012) Cancer survival and prevalence in Australia: period estimates from 1982 to 2010

  2. Chandana SR, Movva S, Arora M, Singh T (2008) Primary brain tumors in adults. Am Fam Physician 77:1423–1430

    PubMed  Google Scholar 

  3. Currow D, Thomson W (2014) Cancer in NSW—Incidence Report 2009

  4. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. doi:10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  5. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. doi:10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  6. The RANO Criteria 2011

  7. Kruser TJ, Mehta MP, Robins HI (2013) Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother 13:389–403. doi:10.1586/ern.13.7

    Article  CAS  PubMed  Google Scholar 

  8. Song YS, Choi SH, Park C-K, Yi KS, Lee WJ, Yun TJ et al (2013) True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol 14:662–672. doi:10.3348/kjr.2013.14.4.662

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H et al (2013) Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 269:831–840. doi:10.1148/radiol.13122024

    Article  PubMed  Google Scholar 

  10. Oborski MJ, Laymon CM, Lieberman FS, Mountz JM (2013) Distinguishing pseudoprogression from progression in high-grade gliomas: a brief review of current clinical practice and demonstration of the potential value of 18F-FDG PET. Clin Nucl Med 38:381–384. doi:10.1097/RLU.0b013e318286c148

    Article  PubMed  Google Scholar 

  11. Lee WJ, Choi SH, Park C-K, Yi KS, Kim TM, Lee S-H et al (2012) Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol 19:1353–1361. doi:10.1016/j.acra.2012.06.011

    Article  PubMed  Google Scholar 

  12. Caroline I, Rosenthal MA (2012) Imaging modalities in high-grade gliomas: pseudoprogression, recurrence, or necrosis? J Clin Neurosci Off J Neurosurg Soc Australas 19:633–637. doi:10.1016/j.jocn.2011.10.003

    CAS  Google Scholar 

  13. Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E (2012) Treatment-related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum—use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol 198:19–26. doi:10.2214/AJR.11.7417

    Article  PubMed  Google Scholar 

  14. Nasseri M, Gahramanov S, Netto JP, Fu R, Muldoon LL, Varallyay C et al (2014) Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question. Neuro-Oncology. doi:10.1093/neuonc/not328

    PubMed  PubMed Central  Google Scholar 

  15. Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ (2013) Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol 34:2278–2286. doi:10.3174/ajnr.A3634

    Article  CAS  PubMed  Google Scholar 

  16. Choi YJ, Kim HS, Jahng G-H, Kim SJ, Suh DC (2013) Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol Stockh Swed 1987. doi:10.1177/0284185112474916

    Google Scholar 

  17. Comparison of Diameter and Perimeter Methods for Tumor Volume Calculation n.d. http://jco.ascopubs.org.ezproxy1.library.usyd.edu.au/content/19/2/551.full?sid=9379d728-78ba-4f6c-8658-943bcf08f5b7 Accessed September 13 2015

  18. Kanaly CW, Ding D, Mehta AI, Waller AF, Crocker I, Desjardins A et al (2011) A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS One. doi:10.1371/journal.pone.0016031

    PubMed  PubMed Central  Google Scholar 

  19. Chow DS, Qi J, Guo X, Miloushev VZ, Iwamoto FM, Bruce JN et al (2014) Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. Am J Neuroradiol 35:498–503. doi:10.3174/ajnr.A3724

    Article  CAS  PubMed  Google Scholar 

  20. Provenzale JM, Mancini MC (2012) Assessment of intra-observer variability in measurement of high-grade brain tumors. J Neurooncol 108:477–483. doi:10.1007/s11060-012-0843-2

    Article  PubMed  Google Scholar 

  21. Iliadis G, Kotoula V, Chatzisotiriou A, Televantou D, Eleftheraki AG, Lambaki S et al (2012) Volumetric and MGMT parameters in glioblastoma patients: survival analysis. BMC Cancer 12:3. doi:10.1186/1471-2407-12-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keles GE, Lamborn KR, Chang SM, Prados MD, Berger MS (2004) Volume of residual disease as a predictor of outcome in adult patients with recurrent supratentorial glioblastomas multiforme who are undergoing chemotherapy. J Neurosurg 100:41–46. doi:10.3171/jns.2004.100.1.0041

    Article  PubMed  Google Scholar 

  23. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. doi:10.3171/jns.2001.95.2.0190

    Article  CAS  PubMed  Google Scholar 

  24. Dempsey MF, Condon BR, Hadley DM (2005) Measurement of tumor “Size” in recurrent malignant glioma: 1D, 2D, or 3D? Am J Neuroradiol 26:770–776

    PubMed  Google Scholar 

  25. Huang RY, Rahman R, Hamdan A, Kane C, Chen C, Norden AD et al (2013) Recurrent glioblastoma: volumetric assessment and stratification of patient survival with early posttreatment magnetic resonance imaging in patients treated with bevacizumab. Cancer 119:3479–3488. doi:10.1002/cncr.28210

    Article  CAS  PubMed  Google Scholar 

  26. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A et al (2014) Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro-Oncology 16:113–122. doi:10.1093/neuonc/not137

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yong RL, Wu T, Mihatov N, Shen MJ, Brown MA, Zaghloul KA et al (2014) Residual tumor volume and patient survival following reoperation for recurrent glioblastoma. J Neurosurg 121:802–809. doi:10.3171/2014.6.JNS132038

    Article  PubMed  Google Scholar 

  28. Identifying the survival subtypes of glioblastoma by quantitative volumetric analysis of MRI—Springer n.d. http://link.springer.com.ezproxy2.library.usyd.edu.au/article/10.1007/s11060-014-1478-2/fulltext.html Accessed August 16, 2015

  29. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH et al (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:1115–1123. doi:10.3171/2014.7.JNS132449

    Article  PubMed  Google Scholar 

  30. Cao Y, Nagesh V, Hamstra D, Tsien CI, Ross BD, Chenevert TL et al (2006) The extent and severity of vascular leakage as evidence of tumor aggressiveness in high-grade gliomas. Cancer Res 66:8912–8917. doi:10.1158/0008-5472.CAN-05-4328

    Article  CAS  PubMed  Google Scholar 

  31. Pitfalls in the Neuroimaging of Glioblastoma in the Era of Antiangiogenic and Immuno/Targeted Therapy—Detecting Illusive Disease, Defining Response n.d. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337341/ Accessed August 15, 2015

Download references

Funding

No funding was received to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecelia Elizabeth Gzell.

Ethics declarations

Conflict of Interest

The authors advise there is no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gzell, C.E., Wheeler, H.R., McCloud, P. et al. Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma. J Neurooncol 128, 67–74 (2016). https://doi.org/10.1007/s11060-016-2074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2074-4

Keywords

Navigation