Skip to main content
Log in

TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2014

Abstract

TP53 is a pivotal gene frequently mutated in diffuse gliomas and particularly in astrocytic tumors. The majority of studies dedicated to TP53 in gliomas were focused on mutational hotspots located in exons 5–8. Recent studies have suggested that TP53 is also mutated outside the classic mutational hotspots reported in gliomas. Therefore, we have sequenced all TP53 coding exons in a retrospective series of 61 low grade gliomas (LGG) using high throughput sequencing technology. In addition, TP53 mutational status was correlated with: (i) p53 expression, (ii) tumor type, (iii) chromosome arms 1p/19q status and (iv) clinical features of patients. The cohort included 32 oligodendrogliomas (O), 21 oligoastrocytomas (M) and 8 astrocytomas (A). TP53 mutation was detected in 52.4 % (32/61) of tumors (34 % of O, 71.4 % of M and 75 % of A). All mutations (38 mutations in 32 samples) were detected in exons 4, 5, 6, 7, 8 and 10. Missense and non-missense mutations, including seven novel mutations, were detected in 42.6 and 9.8 % of tumors respectively. TP53 mutations were almost mutually exclusive with 1p/19q co-deletion and were associated with: (i) astrocytic phenotype, (ii) younger age, (iii) p53 expression. Using a threshold of 10 % p53-positive tumor cells, p53 expression is an interesting surrogate marker for missense TP53 mutations (Se = 92 %; Sp = 79.4 %) but not for non-missense mutation (18.4 % of mutations). TP53 and p53 statuses were not prognostic in LGG. In conclusion, we have identified novel TP53 mutations in LGG. TP53 mutations outside exons 4–8 are rare. Although it remains imperfect, p53 expression with a threshold of 10 % is a good surrogate marker for missense TP53 mutations and appears helpful in the setting of LGG phenotype diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  3. Watanabe K et al (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3:523–530

    CAS  PubMed  Google Scholar 

  4. Nozaki M et al (1999) Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro Oncol 1:124–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Okamoto Y et al (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 108:49–56

    Article  PubMed  Google Scholar 

  6. Zheng H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Robles AI, Harris CC (2010) Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2:a001016

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hartmann C et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17:4588–4599

    Article  CAS  PubMed  Google Scholar 

  9. Bourne TD, Schiff D (2010) Update on molecular findings, management and outcome in low-grade gliomas. Nat Rev Neurol 6:695–701

    Article  PubMed  Google Scholar 

  10. Peraud A, Kreth FW, Wiestler OD, Kleihues P, Reulen H-J (2002) Prognostic impact of TP53 mutations and P53 protein overexpression in supratentorial WHO grade II astrocytomas and oligoastrocytomas. Clin Cancer Res 8:1117–1124

    CAS  PubMed  Google Scholar 

  11. Ständer M, Peraud A, Leroch B, Kreth FW (2004) Prognostic impact of TP53 mutation status for adult patients with supratentorial World Health Organization Grade II astrocytoma or oligoastrocytoma: a long-term analysis. Cancer 101:1028–1035

    Article  PubMed  Google Scholar 

  12. Reyes-Botero G et al (2014) Molecular analysis of diffuse intrinsic brainstem gliomas in adults. J Neurooncol 116:405–411

    Article  CAS  PubMed  Google Scholar 

  13. Idbaih A et al (2007) TP53 codon 72 polymorphism, p53 expression, and 1p/19q status in oligodendroglial tumors. Cancer Genet Cytogenet 177:103–107

    Article  CAS  PubMed  Google Scholar 

  14. Labussiere M et al (2010) All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 74:1886–1890

    Article  CAS  PubMed  Google Scholar 

  15. Kim Y-H et al (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177:2708–2714

    Article  PubMed Central  PubMed  Google Scholar 

  16. Von Deimling A et al (1992) p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52:2987–2990

    Google Scholar 

  17. Ohgaki H et al (1993) Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 8:74–80

    Article  CAS  PubMed  Google Scholar 

  18. Del Arco A et al (1993) Timing of p53 mutations during astrocytoma tumorigenesis. Hum Mol Genet 2:1687–1690

    Article  PubMed  Google Scholar 

  19. Kraus JA et al (1994) TP53 alterations and clinical outcome in low grade astrocytomas. Genes Chromosomes Cancer 10:143–149

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh LL, Hsia CF, Wang LY, Chen CJ, Ho YS (1994) p53 gene mutations in brain tumors in Taiwan. Cancer Lett 78:25–32

    Article  CAS  PubMed  Google Scholar 

  21. Chozick BS et al (1994) Pattern of mutant p53 expression in human astrocytomas suggests the existence of alternate pathways of tumorigenesis. Cancer 73:406–415

    Article  CAS  PubMed  Google Scholar 

  22. Patt S et al (1996) p53 gene mutations in human astrocytic brain tumors including pilocytic astrocytomas. Hum Pathol 27:586–589

    Article  CAS  PubMed  Google Scholar 

  23. Hagel C et al (1996) Demonstration of p53 protein and TP53 gene mutations in oligodendrogliomas. Eur J Cancer 32A:2242–2248

    Article  CAS  PubMed  Google Scholar 

  24. Weber RG et al (1996) Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13:983–994

    CAS  PubMed  Google Scholar 

  25. Hwang SL et al (1999) Expression and mutation analysis of the p53 gene in astrocytoma. J Formos Med Assoc 98:31–38

    CAS  PubMed  Google Scholar 

  26. Ishii N et al (1999) Cells with TP53 mutations in low grade astrocytic tumors evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene 18:5870–5878

    Article  CAS  PubMed  Google Scholar 

  27. Bigner SH et al (1999) Molecular genetic aspects of oligodendrogliomas including analysis by comparative genomic hybridization. Am J Pathol 155:375–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. James CD et al (1999) Tumor suppressor gene alterations in malignant gliomas: histopathological associations and prognostic evaluation. Int J Oncol 15:547–553

    CAS  PubMed  Google Scholar 

  29. Jin W, Xu X, Yang T, Hua Z (2000) p53 mutation, EGFR gene amplification and loss of heterozygosity on chromosome 10, 17 p in human gliomas. Chin Med J 113:662–666

    CAS  PubMed  Google Scholar 

  30. Kösel S, Scheithauer BW, Graeber MB (2001) Genotype-phenotype correlation in gemistocytic astrocytomas. Neurosurgery 48:187–193 discussion 193–194

    Article  PubMed  Google Scholar 

  31. Calogero A et al (2001) The early growth response gene EGR-1 behaves as a suppressor gene that is down-regulated independent of ARF/Mdm2 but not p53 alterations in fresh human gliomas. Clin Cancer Res 7:2788–2796

    CAS  PubMed  Google Scholar 

  32. Chawengchao B et al (2001) Detection of a novel point mutation in the p53 gene in grade II astrocytomas by PCR-SSCP analysis with additional Klenow treatment. Anticancer Res 21:2739–2743

    CAS  PubMed  Google Scholar 

  33. Ueki K et al (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8:196–201

    CAS  PubMed  Google Scholar 

  34. Rasheed A et al (2002) Molecular markers of prognosis in astrocytic tumors. Cancer 94:2688–2697

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T (2003) Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res 9:4884–4890

    CAS  PubMed  Google Scholar 

  36. Ono Y et al (1997) Accumulation of wild-type p53 in astrocytomas is associated with increased p21 expression. Acta Neuropathol 94:21–27

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe K et al (1998) p53 and PTEN gene mutations in gemistocytic astrocytomas. Acta Neuropathol 95:559–564

    Article  CAS  PubMed  Google Scholar 

  38. Hulsebos TJM, Troost D, Leenstra S (2004) Molecular-genetic characterisation of gliomas that recur as same grade or higher grade tumours. J. Neurol Neurosurg Psychiatr 75:723–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN (2004) Association of p53 tumor suppressor gene with paraclinical and clinical modalities of gliomas patients in Malaysia. Acta Neurochir (Wien) 146:595–601

    Article  CAS  Google Scholar 

  40. Mueller W, Lass U, Wellmann S, Kunitz F, von Deimling A (2005) Mutation analysis of DKK1 and in vivo evidence of predominant p53-independent DKK1 function in gliomas. Acta Neuropathol 109:314–320

    Article  CAS  PubMed  Google Scholar 

  41. Qu M et al (2007) Genetically distinct astrocytic and oligodendroglial components in oligoastrocytomas. Acta Neuropathol 113:129–136

    Article  CAS  PubMed  Google Scholar 

  42. Ren Z-P et al (2007) Molecular genetic analysis of p53 intratumoral heterogeneity in human astrocytic brain tumors. J Neuropathol Exp Neurol 66:944–954

    Article  CAS  PubMed  Google Scholar 

  43. Jeon YK et al (2007) Chromosome 1p and 19q status and p53 and p16 expression patterns as prognostic indicators of oligodendroglial tumors: a clinicopathological study using fluorescence in situ hybridization. Neuropathology 27:10–20

    Article  PubMed  Google Scholar 

  44. Mellai M et al (2011) IDH1 and IDH2 mutations, immunohistochemistry and associations in a series of brain tumors. J Neurooncol 105:345–357

    Article  CAS  PubMed  Google Scholar 

  45. Groenendijk FH et al (2011) MGMT promoter hypermethylation is a frequent, early, and consistent event in astrocytoma progression, and not correlated with TP53 mutation. J Neurooncol 101:405–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pardo FS et al (2004) Mutant, wild type, or overall p53 expression: freedom from clinical progression in tumours of astrocytic lineage. Br J Cancer 91:1678–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Adzhubei IA et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ricard D et al (2012) Primary brain tumours in adults. Lancet 379:1984–1996

    Article  PubMed  Google Scholar 

  49. Faria MHG et al (2012) TP53 mutations in astrocytic gliomas: an association with histological grade, TP53 codon 72 polymorphism and p53 expression. APMIS 120:882–889

    Article  CAS  PubMed  Google Scholar 

  50. Takano S et al (2012) Immunohistochemical detection of IDH1 mutation, p53, and internexin as prognostic factors of glial tumors. J Neurooncol 108:361–373

    Article  CAS  PubMed  Google Scholar 

  51. Hirose T, Ishizawa K, Shimada S (2010) Utility of in situ demonstration of 1p loss and p53 overexpression in pathologic diagnosis of oligodendroglial tumors. Neuropathology 30:586–596

    Article  PubMed  Google Scholar 

  52. Figarella-Branger D et al (2012) Molecular genetics of adult grade II gliomas: towards a comprehensive tumor classification. J Neurooncol 110:205–2013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the program “Investissements d’avenir” ANR-10-IAIHU-06. AA has been granted by “Obra Social la Caixa” and ARTC (Association pour la Recherche sur les Tumeurs Cérébrales).

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agusti Alentorn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillet, E., Alentorn, A., Doukouré, B. et al. TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118, 131–139 (2014). https://doi.org/10.1007/s11060-014-1407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1407-4

Keywords

Navigation