Skip to main content

Advertisement

Log in

The role of imaging in the management of progressive glioblastoma

A systematic review and evidence-based clinical practice guideline

  • TOPIC REVIEW & CLINICAL GUIDELINES
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Question

Which imaging techniques most accurately differentiate true tumor progression from pseudo-progression or treatment related changes in patients with previously diagnosed glioblastoma?

Target population

These recommendations apply to adults with previously diagnosed glioblastoma who are suspected of experiencing progression of the neoplastic process.

Recommendations

Level II

Magnetic resonance imaging with and without gadolinium enhancement is recommended as the imaging surveillance method to detect the progression of previously diagnosed glioblastoma.

Level II

Magnetic resonance spectroscopy is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma.

Level III

The routine use of positron emission tomography to identify progression of glioblastoma is not recommended.

Level III

Single-photon emission computed tomography imaging is recommended as a diagnostic method to differentiate true tumor progression from treatment-related imaging changes or pseudo-progression in patients with suspected progressive glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Darefsky AS, King JT Jr, Dubrow R (2012) Adult glioblastoma multiforme survival in the temozolomide era: a population-based analysis of surveillance, epidemiology, and end results registries. Cancer 118(8):2163–2172

    Article  PubMed Central  PubMed  Google Scholar 

  2. Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107(1):207–212

    Article  PubMed  Google Scholar 

  3. Easaw JC, Mason WP, Perry J et al (2011) Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Current Oncol 18(3):e126–e136

    Article  CAS  Google Scholar 

  4. Olson JJ, Fadul CE, Brat DJ, Mukundan S, Ryken TC (2009) Management of newly diagnosed glioblastoma: guidelines development, value and application. J Neurooncol 93(1):1–23

    Article  PubMed  Google Scholar 

  5. Olson JJ, Ryken T (2008) Guidelines for the treatment of newly diagnosed glioblastoma: introduction. J Neurooncol 89(3):255–258

    Article  PubMed  Google Scholar 

  6. Brandes AA, Tosoni A, Spagnolli F et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10(3):361–367

    Article  PubMed Central  PubMed  Google Scholar 

  7. Brandsma D, Stalpers L, Taal W, Sminia P, van den Bent MJ (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5):453–461

    Article  PubMed  Google Scholar 

  8. Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22(6):633–638

    Article  PubMed  Google Scholar 

  9. Sanghera P, Perry J, Sahgal A et al (2010) Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci 37(1):36–42

    PubMed  Google Scholar 

  10. Hollingworth W, Medina LS, Lenkinski RE et al (2006) A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 27(7):1404–1411

    CAS  PubMed  Google Scholar 

  11. Matz PG, Anderson PA, Kaiser MG et al (2009) Introduction and methodology: guidelines for the surgical management of cervical degenerative disease. J Neurosurg Spine 11(2):101–103

    Article  PubMed  Google Scholar 

  12. Mukundan S, Holder C, Olson JJ (2008) Neuroradiological assessment of newly diagnosed glioblastoma. J Neurooncol 89(3):259–269

    Article  PubMed  Google Scholar 

  13. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas: classification with MR imaging. Radiology 174(2):411–415

    CAS  PubMed  Google Scholar 

  14. Johnson PC, Hunt SJ, Drayer BP (1989) Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings. Radiology 170(1 Pt 1):211–217

    CAS  PubMed  Google Scholar 

  15. Ballman KV, Buckner JC, Brown PD et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9(1):29–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lamborn KR, Yung WK, Chang SM et al (2008) Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol 10(2):162–170

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wick W, Stupp R, Beule AC et al (2008) A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro Oncol 10(6):1019–1024

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hess KR, Wong ET, Jaeckle KA et al (1999) Response and progression in recurrent malignant glioma. Neuro Oncol 1(4):282–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Brandes AA, Franceschi E, Tosoni A et al (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13):2192–2197

    Article  PubMed  Google Scholar 

  20. Gerstner ER, McNamara MB, Norden AD, Lafrankie D, Wen PY (2009) Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol 94(1):97–101

    Article  CAS  PubMed  Google Scholar 

  21. Batchelor TT, Duda DG, di Tomaso E et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28(17):2817–2823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25(30):4722–4729

    Article  CAS  PubMed  Google Scholar 

  23. Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740

    Article  CAS  PubMed  Google Scholar 

  24. Kreisl TN, Kim L, Moore K et al (2009) A phase I trial of enzastaurin in patients with recurrent gliomas. Clin Cancer Res Off J Am Assoc Cancer Res 15(10):3617–3623

    Article  CAS  Google Scholar 

  25. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280

    CAS  PubMed  Google Scholar 

  27. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972

    Article  PubMed  Google Scholar 

  28. Wen PY, Norden AD, Drappatz J, Quant E (2010) Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 12(1):68–75

    Article  PubMed  Google Scholar 

  29. van den Bent MJ, Vogelbaum MA, Wen PY, Macdonald DR, Chang SM (2009) End point assessment in gliomas: novel treatments limit usefulness of classical Macdonald’s Criteria. J Clin Oncol 27(18):2905–2908

    Article  PubMed Central  PubMed  Google Scholar 

  30. Agbi CB, Bernstein M, Laperriere N, Leung P, Lumley M (1992) Patterns of recurrence of malignant astrocytoma following stereotactic interstitial brachytherapy with iodine-125 implants. Int J Radiat Oncol Biol Phys 23(2):321–326

    Article  CAS  PubMed  Google Scholar 

  31. Aiken AH, Chang SM, Larson D, Butowski N, Cha S (2008) Longitudinal magnetic resonance imaging features of glioblastoma multiforme treated with radiotherapy with or without brachytherapy. Int J Radiat Oncol Biol Phys 72(5):1340–1346

    Article  PubMed  Google Scholar 

  32. Curnes JT, Laster DW, Ball MR, Moody DM, Witcofski RL (1986) MRI of radiation injury to the brain. AJR. Am J Roentgenol 147(1):119–124

    Article  CAS  PubMed  Google Scholar 

  33. Dooms GC, Hecht S, Brant-Zawadzki M, Berthiaume Y, Norman D, Newton TH (1986) Brain radiation lesions: MR imaging. Radiology 158(1):149–155

    CAS  PubMed  Google Scholar 

  34. Kleinberg L, Yoon G, Weingart JD et al (2009) Imaging after GliaSite brachytherapy: prognostic MRI indicators of disease control and recurrence. Int J Radiat Oncol Biol Phys 75(5):1385–1391

    Article  PubMed  Google Scholar 

  35. Kumar AJ, Leeds NE, Fuller GN et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217(2):377–384

    Article  CAS  PubMed  Google Scholar 

  36. Sneed PK, Gutin PH, Larson DA et al (1994) Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys 29(4):719–727

    Article  CAS  PubMed  Google Scholar 

  37. Taal W, Brandsma D, de Bruin HG et al (2008) Incidence of early pseudo-progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113(2):405–410

    Article  CAS  PubMed  Google Scholar 

  38. Valery CA, Marro B, Boyer O et al (2001) Extent of tumor-brain interface: a new tool to predict evolution of malignant gliomas. J Neurosurg 94(3):433–436

    Article  CAS  PubMed  Google Scholar 

  39. Al Sayyari A, Buckley R, McHenery C, Pannek K, Coulthard A, Rose S (2010) Distinguishing recurrent primary brain tumor from radiation injury: a preliminary study using a susceptibility-weighted MR imaging-guided apparent diffusion coefficient analysis strategy. AJNR Am J Neuroradiol 31(6):1049–1054

    Article  CAS  PubMed  Google Scholar 

  40. Barajas RF Jr, Chang JS, Segal MR et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253(2):486–496

    Article  PubMed Central  PubMed  Google Scholar 

  41. Hu LS, Eschbacher JM, Heiserman JE et al (2012) Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol 14(7):919–930

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ringelstein A, Turowski B, Gizewski ER et al (2010) Evaluation of ADC mapping as an early predictor for tumor response to chemotherapy in recurrent glioma treated with bevacizumab/irinotecan: proof of principle. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 182(10):868–872

    Article  CAS  PubMed  Google Scholar 

  43. Sawlani RN, Raizer J, Horowitz SW et al (2010) Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging—pilot study. Radiology 255(2):622–628

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sorensen AG, Batchelor TT, Zhang WT et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69(13):5296–5300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Stenberg L, Englund E, Wirestam R, Siesjo P, Salford LG, Larsson EM (2006) Dynamic susceptibility contrast-enhanced perfusion magnetic resonance (MR) imaging combined with contrast-enhanced MR imaging in the follow-up of immunogene-treated glioblastoma multiforme. Acta Radiol (Stockholm, Sweden: 1987) 47(8):852–861

    CAS  Google Scholar 

  46. Vrabec M, Van Cauter S, Himmelreich U et al (2011) MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology 53(10):721–731

    Article  PubMed  Google Scholar 

  47. Paldino MJ, Desjardins A, Friedman HS, Vredenburgh JJ, Barboriak DP (2011) A change in the apparent diffusion coefficient after treatment with bevacizumab is associated with decreased survival in patients with recurrent glioblastoma multiforme. Br J Radiol 13(12):1349–1363

    Google Scholar 

  48. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Tran Minh VA, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. Neuroradiology 48(3):150–159

    Article  CAS  PubMed  Google Scholar 

  49. Sundgren PC, Fan X, Weybright P et al (2006) Differentiation of recurrent brain tumor versus radiation injury using diffusion tensor imaging in patients with new contrast-enhancing lesions. Magn Reson Imaging 24(9):1131–1142

    Article  CAS  PubMed  Google Scholar 

  50. Zeng QS, Li CF, Liu H, Zhen JH, Feng DC (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys 68(1):151–158

    Article  PubMed  Google Scholar 

  51. Ando K, Ishikura R, Nagami Y et al (2004) Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nihon Igaku Hoshasen Gakkai Zasshi 64(3):121–126

    CAS  PubMed  Google Scholar 

  52. Chuang CF, Chan AA, Larson D et al (2007) Potential value of MR spectroscopic imaging for the radiosurgical management of patients with recurrent high-grade gliomas. Technol Cancer Res Treat 6(5):375–382

    PubMed  Google Scholar 

  53. Lichy MP, Henze M, Plathow C, Bachert P, Kauczor HU, Schlemmer HP (2004) Metabolic imaging to follow stereotactic radiation of gliomas—the role of 1H MR spectroscopy in comparison to FDG-PET and IMT-SPECT. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 176(8):1114–1121

    Article  CAS  PubMed  Google Scholar 

  54. Matsusue E, Fink JR, Rockhill JK, Ogawa T, Maravilla KR (2010) Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 52(4):297–306

    Article  PubMed  Google Scholar 

  55. Plotkin M, Gneveckow U, Meier-Hauff K et al (2006) 18F-FET PET for planning of thermotherapy using magnetic nanoparticles in recurrent glioblastoma. Int J Hyperth 22(4):319–325

    Article  CAS  Google Scholar 

  56. Rabinov JD, Lee PL, Barker FG et al (2002) In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 225(3):871–879

    Article  CAS  PubMed  Google Scholar 

  57. Srinivasan R, Phillips JJ, Vandenberg SR et al (2010) Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM. Neuro Oncol 12(11):1152–1161

    Article  PubMed Central  PubMed  Google Scholar 

  58. Traber F, Block W, Flacke S et al (2002) 1H-MR spectroscopy of brain tumors in the course of radiation therapy: use of fast spectroscopic imaging and single-voxel spectroscopy for diagnosing recurrence. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 174(1):33–42

    Article  CAS  PubMed  Google Scholar 

  59. Wald LL, Nelson SJ, Day MR et al (1997) Serial proton magnetic resonance spectroscopy imaging of glioblastoma multiforme after brachytherapy. J Neurosurg 87(4):525–534

    Article  CAS  PubMed  Google Scholar 

  60. Weybright P, Sundgren PC, Maly P et al (2005) Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 185(6):1471–1476

    Article  PubMed  Google Scholar 

  61. Zeng QS, Li CF, Zhang K, Liu H, Kang XS, Zhen JH (2007) Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 84(1):63–69

    Article  CAS  PubMed  Google Scholar 

  62. Lichy MP, Bachert P, Henze M, Lichy CM, Debus J, Schlemmer HP (2004) Monitoring individual response to brain-tumour chemotherapy: proton MR spectroscopy in a patient with recurrent glioma after stereotactic radiotherapy. Neuroradiology 46(2):126–129

    Article  CAS  PubMed  Google Scholar 

  63. Plotkin M, Eisenacher J, Bruhn H et al (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 70(1):49–58

    Article  PubMed  Google Scholar 

  64. Petrirena GJ, Goldman S, Delattre JY (2011) Advances in PET imaging of brain tumors: a referring physician’s perspective. Curr Opin Oncol 23(6):617–623

    Article  CAS  PubMed  Google Scholar 

  65. Enslow MS, Zollinger LV, Morton KA et al (2012) Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma. Clin Nucl Med 37(9):854–861

    Article  PubMed Central  PubMed  Google Scholar 

  66. Potzi C, Becherer A, Marosi C et al (2007) [11C] methionine and [18F] fluorodeoxyglucose PET in the follow-up of glioblastoma multiforme. J Neurooncol 84(3):305–314

    Article  PubMed  Google Scholar 

  67. Tripathi M, Sharma R, Varshney R et al (2012) Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 37(2):158–163

    Article  PubMed  Google Scholar 

  68. Chin HW, Fruin AH, Bertoni JM et al (1991) Application of positron emission tomography to neurological oncology. Neb Med J 76(3):70–73

    CAS  Google Scholar 

  69. Galldiks N, Kracht LW, Burghaus L et al (2010) Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging 9(1):40–46

    CAS  PubMed  Google Scholar 

  70. Eary JF, Mankoff DA, Spence AM et al (1999) 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 59(3):615–621

    CAS  PubMed  Google Scholar 

  71. Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] galacto-RGD positron emission tomography. Neuro Oncol 11(6):861–870

    Article  PubMed Central  PubMed  Google Scholar 

  72. Ishizu K, Sadato N, Yonekura Y et al (1994) Enhanced detection of brain tumors by [18F]fluorodeoxyglucose PET with glucose loading. J Comput Assist Tomogr 18(1):12–15

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto Y, Wong TZ, Turkington TG, Hawk TC, Reardon DA, Coleman RE (2006) 3’-Deoxy-3’-[F-18]fluorothymidine positron emission tomography in patients with recurrent glioblastoma multiforme: comparison with Gd-DTPA enhanced magnetic resonance imaging. Mol Imaging Biol 8(6):340–347

    Article  PubMed  Google Scholar 

  74. Vos MJ, Tony BN, Hoekstra OS, Postma TJ, Heimans JJ, Hooft L (2007) Systematic review of the diagnostic accuracy of 201Tl single photon emission computed tomography in the detection of recurrent glioma. Nucl Med Commun 28(6):431–439

    Article  PubMed  Google Scholar 

  75. Carvalho PA, Schwartz RB, Alexander E 3rd et al (1992) Detection of recurrent gliomas with quantitative thallium-201/technetium-99m HMPAO single-photon emission computerized tomography. J Neurosurg 77(4):565–570

    Article  CAS  PubMed  Google Scholar 

  76. Kline JL, Noto RB, Glantz M (1996) Single-photon emission CT in the evaluation of recurrent brain tumor in patients treated with gamma knife radiosurgery or conventional radiation therapy. AJNR Am J Neuroradiol 17(9):1681–1686

    CAS  PubMed  Google Scholar 

  77. Lorberboym M, Baram J, Feibel M, Hercbergs A, Lieberman L (1995) A prospective evaluation of thallium-201 single photon emission computerized tomography for brain tumor burden. Int J Radiat Oncol Biol Phys 32(1):249–254

    Article  CAS  PubMed  Google Scholar 

  78. Schwartz RB, Carvalho PA, Alexander E 3rd, Loeffler JS, Folkerth R, Holman BL (1991) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. AJNR Am J Neuroradiol 12(6):1187–1192

    CAS  PubMed  Google Scholar 

  79. Schwartz RB, Holman BL, Polak JF et al (1998) Dual-isotope single-photon emission computerized tomography scanning in patients with glioblastoma multiforme: association with patient survival and histopathological characteristics of tumor after high-dose radiotherapy. J Neurosurg 89(1):60–68

    Article  CAS  PubMed  Google Scholar 

  80. Slizofski WJ, Krishna L, Katsetos CD et al (1994) Thallium imaging for brain tumors with results measured by a semiquantitative index and correlated with histopathology. Cancer 74(12):3190–3197

    Article  CAS  PubMed  Google Scholar 

  81. Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir 38(6):342–347 (discussion 347–348)

    Article  CAS  Google Scholar 

  82. Vos MJ, Berkhof J, Hoekstra OS et al (2012) MRI and thallium-201 SPECT in the prediction of survival in glioma. Neuroradiology 54(6):539–546

    Article  PubMed  Google Scholar 

  83. Kosuda S, Fujii H, Aoki S et al (1994) Prediction of survival in patients with suspected recurrent cerebral tumors by quantitative thallium-201 single photon emission computed tomography. Int J Radiat Oncol Biol Phys 30(5):1201–1206

    Article  CAS  PubMed  Google Scholar 

  84. Namba H, Togawa T, Yui N et al (1996) The effect of steroid on thallium-201 uptake by malignant gliomas. Eur J Nucl Med 23(8):991–992

    Article  CAS  PubMed  Google Scholar 

  85. Vertosick FT Jr, Selker RG, Grossman SJ, Joyce JM (1994) Correlation of thallium-201 single photon emission computed tomography and survival after treatment failure in patients with glioblastoma multiforme. Neurosurgery 34(3):396–401

    Article  PubMed  Google Scholar 

  86. Galban CJ, Chenevert TL, Meyer CR et al (2011) Prospective analysis of parametric response map-derived MRI biomarkers: identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res Off J Am Assoc Cancer Res 17(14):4751–4760

    Article  Google Scholar 

  87. Sanghera P, Rampling R, Haylock B et al (2012) The concepts, diagnosis and management of early imaging changes after therapy for glioblastomas. Clin Oncol (Royal College of Radiologists (Great Britain)) 24(3):216–227

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the AANS/CNS Joint Guidelines Committee for their review, comments and suggestions, the contributions of Laura Mitchell, CNS Guidelines Manager for organizational assistance, Maxine Brown for searching for and retrieving literature and Amy Allison for reference library consultations. We would also like to acknowledge the following individual JGC members for their contributions throughout the review process: Sepideh Amin-Hanjani, MD, FAANS, FACS, FAHA, Martina Stippler, MD, Alexander Khalessi, MD, Isabelle Germano, MD, Sean D. Christie, MD, FRCS (C), Gregory J. Zipfel, MD, Zachary Litvack, MD, MCR, Ann Marie Flannery, MD, Patricia B Raksin, MD, Joshua M. Rosenow, MD, FACS, Steven Casha, MD, PhD, Julie G. Pilitsis, MD, PhD, Gabriel Zada, MD, Adair Prall, Krystal Tomei, MD, Gregory W Hawryluk, MD.

Conflict of interest (COI)

Task Force members report potential COIs prior to beginning work on the guideline and at the time of publication. COI disclosures are reviewed by the Task Force Chair and taken into consideration when determining writing assignments. Resolution of potential COIs included Task Force members were assigned to chapters that did not involve or in any way relate to the potential COIs disclosed.

Disclaimer of liability

The information in these guidelines reflects the current state of knowledge at the time of completion. The presentations are designed to provide an accurate review of the subject matter covered. These guidelines are disseminated with the understanding that the recommendations by the authors and consultants who have collaborated in their development are not meant to replace the individualized care and treatment advice from a patient’s physician(s). If medical advice or assistance is required, the services of a physician should be sought. The proposals contained in these guidelines may not be suitable for use in all circumstances. The choice to implement any particular recommendation contained in these guidelines must be made by a managing physician in light of the situation in each particular patient and on the basis of existing resources.

Funding source

These guidelines were funded exclusively by the CNS and Tumor Section of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons whom received no funding from outside commercial sources to support the development of this document unless otherwise stated in this section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Charles Ryken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryken, T.C., Aygun, N., Morris, J. et al. The role of imaging in the management of progressive glioblastoma. J Neurooncol 118, 435–460 (2014). https://doi.org/10.1007/s11060-013-1330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1330-0

Keywords

Navigation