Skip to main content
Log in

Cytogenetic findings in pediatric radiation-induced atypical meningioma after treatment of medulloblastoma: case report and review of the literature

  • Case Report
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Ionizing radiation is the most recognized risk factor for meningioma in pediatric long-term cancer survivors. Information in this rare setting is exceptional. We report the clinical and cytogenetic findings in a radiation-induced atypical meningioma following treatment for desmoplastic medulloblastoma in a child. This is the second study to describe the cytogenetic aspects on radiation-induced meningiomas in children. Chromosome banding analysis revealed a 46, XX, t(1;3)(p22;q12), del(1)(p?)[8]/46, XX[12]. Loss of chromosome 1p as a consequence of irradiation has been proposed to be more important in the development of secondary meningiomas in adults. Deletions in the short arm of chromosome 1 also appear to be a shared feature in both pediatric cases so far analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Caroli E, Russillo M, Ferrante L (2006) Intracranial meningiomas in children: report of 27 new cases and critical analysis of 440 cases reported in the literature. J Child Neurol 21:31–36

    Article  PubMed  Google Scholar 

  2. Al-Mefty O, Topsakal C, Pravdenkova S, Sawyer JR, Harrison MJ (2004) Radiation-induced meningiomas: clinical, pathological, cytokinetic, and cytogenetic characteristics. J Neurosurg 100:1002–1013

    Article  PubMed  Google Scholar 

  3. Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B (2011) Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst 27:445–453

    Article  PubMed  Google Scholar 

  4. Brassesco MS, Valera ET, Neder L et al (2009) Polyploidy in atypical grade II choroid plexus papilloma of the posterior fossa. Neuropathology 29:293–298

    Article  PubMed  Google Scholar 

  5. Shaffer LG, Tommerup N (2005) ISCN 2005: an international system for human cytogenetic nomenclature. Karger, Basel

    Google Scholar 

  6. Galloway TJ, Indelicato DJ, Amdur RJ, Swanson EL, Morris CG, Marcus RB (2011) Favorable outcomes of pediatric patients treated with radiotherapy to the central nervous system who develop radiation-induced meningiomas. Int J Radiat Oncol Biol Phys 79:117–120

    Article  PubMed  Google Scholar 

  7. Loda M, Xu X, Pession A, Vortmeyer A, Giangaspero F (2000) Membranous expression of glucose transporter-1 protein (GLUT-1) in embryonal neoplasms of the central nervous system. Neuropathol Appl Neurobiol 26:91–97

    Article  PubMed  CAS  Google Scholar 

  8. Ramos-Vara JA, Miller MA, Gilbreath E, Patterson JS (2010) Immunohistochemical detection of CD34, E-cadherin, claudin-1, glucose transporter-1, laminin, and protein gene product 9.5 in 28 canine and 8 feline meningiomas. Vet Pathol. 47:725–737

    Article  PubMed  CAS  Google Scholar 

  9. Menon AG, Rutter JL, von Sattel JP et al (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 14:611–616

    Article  PubMed  CAS  Google Scholar 

  10. Muller P, Henn W, Niedermayer I et al (1999) Deletion of chromosome 1p and loss of expression of alkaline phosphatase indicate progression of meningiomas. Clin Cancer Res 5:3569–3577

    PubMed  CAS  Google Scholar 

  11. Murakami M, Hashimoto N, Takahashi Y, Hosokawa Y, Inazawa J, Mineura K (2003) A consistent region of deletion on 1p36 in meningiomas: identification and relation to malignant progression. Cancer Genet Cytogenet 140:99–106

    Article  PubMed  CAS  Google Scholar 

  12. Shoshan Y, Chernova O, Juen SS et al (2000) Radiation-induced meningioma: a distinct molecular genetic pattern? J Neuropathol Exp Neurol 59:614–620

    PubMed  CAS  Google Scholar 

  13. Bello MJ, Leone PE, Nebreda P et al (1995) Allelic status of chromosome 1 in neoplasms of the nervous system. Cancer Genet Cytogenet 83:160–164

    Article  PubMed  CAS  Google Scholar 

  14. Schneider BF, Shashi V, von Kap-herr C, Golden WL (1995) Loss of chromosomes 22 and 14 in the malignant progression of meningiomas. A comparative study of fluorescence in situ hybridization (FISH) and standard cytogenetic analysis. Cancer Genet Cytogenet 85:101–104

    Article  PubMed  CAS  Google Scholar 

  15. Brassesco MS, Valera ET, Neder L et al (2009) Childhood radiation-associated atypical meningioma with novel complex rearrangements involving chromosomes 1 and 12. Neuropathology 29:585–590

    Article  PubMed  Google Scholar 

  16. Barquinero JF, Knehr S, Braselmann H, Figel M, Bauchinger M (1998) DNA-proportional distribution of radiation-induced chromosome aberrations analysed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype. Int J Radiat Biol 74:315–323

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez JL, Campos A, Goyanes V, Losada C, Veiras C, Edwards AA (1995) X-ray biological dosimetry performed by selective painting of human chromosomes 1 and 2. Int J Radiat Biol 67:295–302

    Article  PubMed  CAS  Google Scholar 

  18. Knehr S, Zitzelsberger H, Braselmann H, Nahrstedt U, Bauchinger M (1996) Chromosome analysis by fluorescence in situ hybridization: further indications for a non-DNA-proportional involvement of single chromosomes in radiation-induced structural aberrations. Int J Radiat Biol 70:385–392

    Article  PubMed  CAS  Google Scholar 

  19. Lucas JN, Awa A, Straume T et al (1992) Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int J Radiat Biol 62:53–63

    Article  PubMed  CAS  Google Scholar 

  20. Natarajan AT, Vyas RC, Wiegant J, Curado MP (1991) A cytogenetic follow-up study of the victims of a radiation accident in Goiania (Brazil). Mutat Res 247:103–111

    Article  PubMed  CAS  Google Scholar 

  21. Scarpato R, Lori A, Tomei A, Cipollini M, Barale R (2000) High prevalence of chromosome 10 rearrangements in human lymphocytes after in vitro X-ray irradiation. Int J Radiat Biol 76:661–666

    Article  PubMed  CAS  Google Scholar 

  22. Tucker JD, Senft JR (1994) Analysis of naturally occurring and radiation-induced breakpoint locations in human chromosomes 1, 2 and 4. Radiat Res 140:31–36

    Article  PubMed  CAS  Google Scholar 

  23. Luomahaara S, Lindholm C, Mustonen R, Salomaa S (1999) Distribution of radiation-induced exchange aberrations in human chromosomes 1, 2 and 4. Int J Radiat Biol 75:1551–1556

    Article  PubMed  CAS  Google Scholar 

  24. Kiuru A, Lindholm C, Auvinen A, Salomaa S (2000) Localization of radiation-induced chromosomal breakpoints along human chromosome 1 using a combination of G-banding and FISH. Int J Radiat Biol 76:667–672

    Article  PubMed  CAS  Google Scholar 

  25. Radulescu I, Elmroth K, Stenerlow B (2004) Chromatin organization contributes to non-randomly distributed double-strand breaks after exposure to high-LET radiation. Radiat Res 161:1–8

    Article  PubMed  CAS  Google Scholar 

  26. Dhall G, Grodman H, Ji L et al (2008) Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr Blood Cancer 50:1169–1175

    Article  PubMed  Google Scholar 

  27. Grill J, Sainte-Rose C, Jouvet A et al (2005) Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6:573–580

    Article  PubMed  CAS  Google Scholar 

  28. von Bueren AO, von Hoff K, Pietsch T et al (2011) Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro Oncol 13:669–679

    Article  Google Scholar 

  29. Oda K, Sato T, Watanabe T, Ichikawa M, Ito E, Matsumoto Y, Ando H, Sakuma J, Kikuta A, Hojo H, Saito K (2012) Radiation-induced World Health Organization grade II meningiomas in young patients following prophylactic cranial irradiation for acute lymphoblastic leukemia in childhood. Three case reports. Neurol Med Chir (Tokyo) 52:224–228

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP proc.: 2010/15,717–0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sol Brassesco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brassesco, M.S., Valera, E.T., Neder, L. et al. Cytogenetic findings in pediatric radiation-induced atypical meningioma after treatment of medulloblastoma: case report and review of the literature. J Neurooncol 110, 397–402 (2012). https://doi.org/10.1007/s11060-012-0982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0982-5

Keywords

Navigation