Skip to main content

Advertisement

Log in

Intracerebral infusion of the bispecific targeted toxin DTATEGF in a mouse xenograft model of a human metastatic non-small cell lung cancer

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the anti-cancer effect of the bispecific diphtheria toxin (DT) based immunotoxin DTATEGF, which targets both the epidermal growth factor (EGF) receptor (EGFR) and the urokinase-type plasminogen activator (uPA) receptor (uPAR) in vitro and in vivo when delivered by convection-enhanced delivery (CED) via an osmotic minipump in a human metastatic non-small cell lung cancer (NSCLC) brain tumor mouse xenograft model. The effects of the bispecific immunotoxin DTATEGF, and monospecific DTAT, DTEGF and control DT at various concentrations were tested for their ability to inhibit the proliferation of human metastatic NSCLC PC9-BrM3 cells in vitro by MTT assay. A xenograft model of human metastatic NSCLC intracranial model was established in nude mice using the human NSCLC PC9-BrM3 cell line genetically marked with a firefly luciferase reporter gene. One microgram of DTATEGF in the treatment group or control DT in the control group was delivered intracranially by CED via an osmotic minipump. The bioluminescent imaging (BLI) was performed at day 7, 14, 1 month, 2 months, and 3 months. Kaplan–Meier survival curves for the two groups were generated. The brain tissue samples were stained by hematoxylin and eosin for histopathological assessment. In vitro, DTATEGF could selectively kill PC9-BrM3 cells and showed an IC50 less than 0.001 nM, representing a more than 100- to 1000-fold increase in activity as compared to monospecific DTAT and DTEGF. In vivo, mice with tumors were treated intracranially with drug via CED where the results showed the treatment was successful in providing a survival benefit with the median survival of mice treated with DTATEGF being significantly prolonged relative to controls (87 vs. 63 days, P = 0.006). The results of these experiments indicate that DTATEGF kills the NSCLC PC9-BrM3 cell line in vitro, and when it is delivered via CED intracranially, it is highly efficacious against metastatic NSCLC brain tumors. DTATEGF is a safe and effective drug where further preclinical and clinical development is warranted for the management of metastatic brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CED:

Convection-enhanced delivery

NSCLC:

Non-small cell lung cancer

EGF:

Epidermal growth factor

EGFR:

EGF receptor

uPAR:

Urokinase plasminogen activator receptor

BLI:

Bioluminescent imaging

IC50:

Half maximal inhibitory concentration

References

  1. Kaal EC, Niel CG, Vecht CJ (2005) Therapeutic management of brain metastasis. Lancet Neurol 4(5):289–298. doi:101016/S1474-4422(05)70072-7

    Article  PubMed  Google Scholar 

  2. Delattre JY, Krol G, Thaler HT, Posner JB (1988) Distribution of brain metastases. Arch Neurol 45(7):741–744

    Article  PubMed  CAS  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics 2008. CA Cancer J Clin 58(2):71–96. doi:10.3322/CA.2007.0010

    Article  PubMed  Google Scholar 

  4. Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, McKenna WG, Byhardt R (1997) Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys 37(4):745–751

    Article  PubMed  CAS  Google Scholar 

  5. Olson JJ, Paleologos NA, Gaspar LE, Robinson PD, Morris RE, Ammirati M, Andrews DW, Asher AL, Burri SH, Cobbs CS, Kondziolka D, Linskey ME, Loeffler JS, McDermott M, Mehta MP, Mikkelsen T, Patchell RA, Ryken TC, Kalkanis SN (2010) The role of emerging and investigational therapies for metastatic brain tumors: a systematic review and evidence-based clinical practice guideline of selected topics. J Neurooncol 96(1):115–142. doi:10.1007/s11060-009-0058-3

    Article  PubMed  CAS  Google Scholar 

  6. Shaw E, Scott C, Suh J, Kadish S, Stea B, Hackman J, Pearlman A, Murray K, Gaspar L, Mehta M, Curran W, Gerber M (2003) RSR13 plus cranial radiation therapy in patients with brain metastases: comparison with the Radiation Therapy Oncology Group Recursive Partitioning Analysis Brain Metastases Database. J Clin Oncol 21(12):2364–2371. doi:10.1200/JCO.2003.08.116

    Article  PubMed  CAS  Google Scholar 

  7. Daniele L, Cassoni P, Bacillo E, Cappia S, Righi L, Volante M, Tondat F, Inghirami G, Sapino A, Scagliotti GV, Papotti M, Novello S (2009) Epidermal growth factor receptor gene in primary tumor and metastatic sites from non-small cell lung cancer. J Thorac Oncol 4(6):684–688. doi:10.1097/JTO.0b013e3181a52359

    Article  PubMed  Google Scholar 

  8. Italiano A, Vandenbos FB, Otto J, Mouroux J, Fontaine D, Marcy PY, Cardot N, Thyss A, Pedeutour F (2006) Comparison of the epidermal growth factor receptor gene and protein in primary non-small-cell-lung cancer and metastatic sites: implications for treatment with EGFR-inhibitors. Ann Oncol 17(6):981–985. doi:10.1093/annonc/mdl038

    Article  PubMed  CAS  Google Scholar 

  9. Torp SH, Helseth E, Ryan L, Stolan S, Dalen A, Unsgaard G (1992) Expression of the epidermal growth factor receptor gene in human brain metastases. APMIS 100(8):713–719

    Article  PubMed  CAS  Google Scholar 

  10. Gomez-Roca C, Raynaud CM, Penault-Llorca F, Mercier O, Commo F, Morat L, Sabatier L, Dartevelle P, Taranchon E, Besse B, Validire P, Italiano A, Soria JC (2009) Differential expression of biomarkers in primary non-small cell lung cancer and metastatic sites. J Thorac Oncol 4(10):1212–1220. doi:10.1097/JTO.0b013e3181b44321

    Article  PubMed  Google Scholar 

  11. Kim JE, Lee DH, Choi Y, Yoon DH, Kim SW, Suh C, Lee JS (2009) Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65(3):351–354. doi:10.1016/j.lungcan.2008.12.011

    Article  PubMed  Google Scholar 

  12. Socinski MA, Langer CJ, Huang JE, Kolb MM, Compton P, Wang L, Akerley W (2009) Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J Clin Oncol 27(31):5255–5261. doi:10.1200/JCO.2009.22.0616

    Article  PubMed  CAS  Google Scholar 

  13. Wu W, Onn A, Isobe T, Itasaka S, Langley RR, Shitani T, Shibuya K, Komaki R, Ryan AJ, Fidler IJ, Herbst RS, O’Reilly MS (2007) Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol Cancer Ther 6(2):471–483. doi:10.1158/1535-7163.MCT-06-0416

    Article  PubMed  CAS  Google Scholar 

  14. Sun M, Behrens C, Feng L, Ozburn N, Tang X, Yin G, Komaki R, Varella-Garcia M, Hong WK, Aldape KD, Wistuba II (2009) HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res 15(15):4829–4837. doi:10.1158/1078-0432.CCR-08-2921

    Article  PubMed  CAS  Google Scholar 

  15. Wakelee H (2008) Antibodies to vascular endothelial growth factor in non-small cell lung cancer. J Thorac Oncol 3(6 Suppl 2):S113–S118. doi:10.1097/JTO.0b013e318174e993

    Article  PubMed  Google Scholar 

  16. Socinski MA, Crowell R, Hensing TE, Langer CJ, Lilenbaum R, Sandler AB, Morris D (2007) Treatment of non-small cell lung cancer, stage IV: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132(3 Suppl):277S–289S. doi:10.1378/chest.07-1381

    Article  PubMed  Google Scholar 

  17. Porta R, Sanchez-Torres JM, Paz-Ares L, Massuti B, Reguart N, Mayo C, Lianes P, Queralt C, Guillem V, Salinas P, Catot S, Isla D, Pradas A, Gurpide A, de Castro J, Polo E, Puig T, Taron M, Colomer R, Rosell R (2011) Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J 37(3):624–631. doi:10.1183/09031936.00195609

    Article  PubMed  CAS  Google Scholar 

  18. Ricciardi S, Tomao S, de Marinis F (2009) Toxicity of targeted therapy in non-small-cell lung cancer management. Clin Lung Cancer 10(1):28–35. doi:10.3816/CLC.2009.n.004

    Article  PubMed  CAS  Google Scholar 

  19. Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y, Craik CS (2010) Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem 285(35):26878–26888. doi:10.1074/jbc.M109.077677

    Article  PubMed  CAS  Google Scholar 

  20. Shih CM, Kuo WH, Lin CW, Chen W, Cheng WE, Chen SC, Lee YL (2011) Association of polymorphisms in the genes of the urokinase plasminogen activation system with susceptibility to and severity of non-small cell lung cancer. Clin Chim Acta 412(1–2):194–198. doi:10.1016/j.cca.2010.10.004

    Article  PubMed  CAS  Google Scholar 

  21. Jacobsen B, Ploug M (2008) The urokinase receptor and its structural homologue C4.4A in human cancer: expression, prognosis and pharmacological inhibition. Curr Med Chem 15(25):2559–2573

    Article  PubMed  CAS  Google Scholar 

  22. Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ (2006) Immunotoxin therapy of cancer. Nat Rev Cancer 6(7):559–565. doi:10.1038/nrc1891

    Article  PubMed  CAS  Google Scholar 

  23. Hall WA (1996) Immunotoxin therapy. Neurosurg Clin N Am 7(3):537–546

    PubMed  CAS  Google Scholar 

  24. Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA (2011) A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol 103(2):255–266. doi:10.1007/s11060-010-0392-5

    Article  PubMed  CAS  Google Scholar 

  25. Oh S, Stish BJ, Sachdev D, Chen H, Dudek AZ, Vallera DA (2009) A novel reduced immunogenicity bispecific targeted toxin simultaneously recognizing human epidermal growth factor and interleukin-4 receptors in a mouse model of metastatic breast carcinoma. Clin Cancer Res 15(19):6137–6147. doi:10.1158/1078-0432.CCR-09-0696

    Article  PubMed  CAS  Google Scholar 

  26. Hall WA, Vallera DA (2006) Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus 20(4):E23. doi:10.3171/foc.2006.20.4.15

    Article  PubMed  Google Scholar 

  27. Hall WA (2009) Convection-enhanced delivery: neurosurgical issues. Curr Drug Targets 10(2):126–130

    Article  PubMed  CAS  Google Scholar 

  28. Hall WA, Rustamzadeh E, Asher AL (2003) Convection-enhanced delivery in clinical trials. Neurosurg Focus 14(2):e2

    Article  PubMed  Google Scholar 

  29. Vogelbaum MA (2005) Convection enhanced delivery for the treatment of malignant gliomas: symposium review. J Neurooncol 73(1):57–69. doi:10.1007/s11060-004-2243-8

    Article  PubMed  Google Scholar 

  30. Vogelbaum MA, Sampson JH, Kunwar S, Chang SM, Shaffrey M, Asher AL, Lang FF, Croteau D, Parker K, Grahn AY, Sherman JW, Husain SR, Puri RK (2007) Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 61 (5):1031-1037; discussion 1037-1038. doi:10.1227/01.neu.0000303199.77370.9e 00006123-200711000-00017 [pii]

  31. Vogelbaum MA (2007) Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol 83(1):97–109. doi:10.1007/s11060-006-9308-9

    Article  PubMed  Google Scholar 

  32. Oh S, Tsai AK, Ohlfest JR, Panoskaltsis-Mortari A, Vallera DA (2011) Evaluation of a bispecific biological drug designed to simultaneously target glioblastoma and its neovasculature in the brain. J Neurosurg 114(6):1662–1671. doi:10.3171/2010.11.JNS101214

    Article  PubMed  Google Scholar 

  33. Oh S, Ohlfest JR, Todhunter DA, Vallera VD, Hall WA, Chen H, Vallera DA (2009) Intracranial elimination of human glioblastoma brain tumors in nude rats using the bispecific ligand-directed toxin, DTEGF13 and convection enhanced delivery. J Neurooncol 95(3):331–342. doi:10.1007/s11060-009-9932-2

    Article  PubMed  CAS  Google Scholar 

  34. Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA (2002) Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 94(8):597–606

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138(1):51–62. doi:10.1016/j.cell.2009.04.030

    Article  PubMed  CAS  Google Scholar 

  36. Rustamzadeh E, Low WC, Vallera DA, Hall WA (2003) Immunotoxin therapy for CNS tumor. J Neurooncol 64(1–2):101–116

    PubMed  Google Scholar 

  37. Rustamzadeh E, Li C, Doumbia S, Hall WA, Vallera DA (2003) Targeting the over-expressed urokinase-type plasminogen activator receptor on glioblastoma multiforme. J Neurooncol 65(1):63–75

    Article  PubMed  Google Scholar 

  38. Koo JS, Kim SH (2011) EGFR and HER-2 status of non-small cell lung cancer brain metastasis and corresponding primary tumor. Neoplasma 58(1):27–34

    Article  PubMed  CAS  Google Scholar 

  39. Almasi CE, Christensen IJ, Hoyer-Hansen G, Dano K, Pappot H, Dienemann H, Muley T (2011) Urokinase receptor forms in serum from non-small cell lung cancer patients: relation to prognosis. Lung Cancer 74(3):510–515. doi:10.1016/j.lungcan.2011.05.008

    Article  PubMed  Google Scholar 

  40. Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42(5):1083–1099; Discussion: 1099–1100

    Google Scholar 

  41. Olson JJ, Zhang Z, Dillehay D, Stubbs J (2008) Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J Neurooncol 89(2):159–168. doi:10.1007/s11060-008-9612-7

    Article  PubMed  Google Scholar 

  42. Sampson JH, Brady ML, Petry NA, Croteau D, Friedman AH, Friedman HS, Wong T, Bigner DD, Pastan I, Puri RK, Pedain C (2007) Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 60 (2 Suppl 1):ONS89-98; discussion ONS98-89. doi:10.1227/01.NEU.0000249256.09289.5F

  43. Oh S, Odland R, Wilson SR, Kroeger KM, Liu C, Lowenstein PR, Castro MG, Hall WA, Ohlfest JR (2007) Improved distribution of small molecules and viral vectors in the murine brain using a hollow fiber catheter. J Neurosurg 107(3):568–577. doi:10.3171/JNS-07/09/0568

    Article  PubMed  Google Scholar 

  44. Mamot C, Nguyen JB, Pourdehnad M, Hadaczek P, Saito R, Bringas JR, Drummond DC, Hong K, Kirpotin DB, McKnight T, Berger MS, Park JW, Bankiewicz KS (2004) Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 68(1):1–9

    Article  PubMed  Google Scholar 

  45. Morrison PF, Chen MY, Chadwick RS, Lonser RR, Oldfield EH (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 277(4 Pt 2):R1218–1229

    PubMed  CAS  Google Scholar 

  46. Hashizume R, Ozawa T, Dinca EB, Banerjee A, Prados MD, James CD, Gupta N (2010) A human brainstem glioma xenograft model enabled for bioluminescence imaging. J Neurooncol 96(2):151–159. doi:10.1007/s11060-009-9954-9

    Article  PubMed  Google Scholar 

  47. Dinca EB, Sarkaria JN, Schroeder MA, Carlson BL, Voicu R, Gupta N, Berger MS, James CD (2007) Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. J Neurosurg 107(3):610–616. doi:10.3171/JNS-07/09/0610

    Article  PubMed  CAS  Google Scholar 

  48. Stish BJ, Oh S, Chen H, Dudek AZ, Kratzke RA, Vallera DA (2009) Design and modification of EGF4KDEL 7Mut, a novel bispecific ligand-directed toxin, with decreased immunogenicity and potent anti-mesothelioma activity. Br J Cancer 101(7):1114–1123. doi:10.1038/sj.bjc.6605297

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Li, Y.M., Massague, J. et al. Intracerebral infusion of the bispecific targeted toxin DTATEGF in a mouse xenograft model of a human metastatic non-small cell lung cancer. J Neurooncol 109, 229–238 (2012). https://doi.org/10.1007/s11060-012-0904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0904-6

Keywords:

Navigation