Skip to main content

Advertisement

Log in

Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab

  • Clinical Study – Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The purpose of the current study was to quantify the reduction in T2 signal abnormality accompanying administration of the anti-angiogenic drug bevacizumab in recurrent glioblastoma (GBM) patients using a voxel-wise differential quantitative T2 (DQT2) mapping technique. Twenty-six patients with recurrent GBM treated with bevacizumab were scanned before and 4–6 weeks after treatment on a 1.5T clinical MR scanner. Quantitative T2 maps were created from proton density and T2-weighted images acquired using a standard multi-echo fast-spin echo sequence. T2 maps after treatment were co-registered with T2 maps prior to treatment in the same patient, and then voxel-wise subtraction was performed to create DQT2 maps for each patient. Results suggest DQT2 maps allow visualization and quantification of voxel-wise T2 changes resulting from anti-VEGF therapy. Results demonstrated a significant decrease in T2 within pre-treatment T2 abnormal regions (mean reduction = 49.4 ms at 1.5T) following anti-VEGF treatment (Wilcoxon signed rank test, P < 0.0001). An elevated residual, post-treatment, median T2 was predictive of both progression-free (Log-rank, P = 0.0074) and overall survival (Log-rank, P = 0.0393).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang H, Held-Feindt J, Buhl R, Mehdorn HM, Mentlein R (2005) Expression of VEGF and its receptors in different brain tumors. Neurol Res 27(4):371–377

    Article  PubMed  CAS  Google Scholar 

  2. Plate KH, Breier G, Risau W (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4(3):207–218

    Article  PubMed  CAS  Google Scholar 

  3. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Weigand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998

    Article  PubMed  CAS  Google Scholar 

  4. Duda DG, Batchelor TT, Willett CG, Jain RK (2007) VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med 13(6):223–230

    Article  PubMed  CAS  Google Scholar 

  5. Nghiemphu PL, Liu W, Lee Y, Than T, Graham C, Lai A, Green RM, Pope WB, Liau LM, Mischel PS, Nelson SF, Elashoff R, Cloughesy TF (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72(14):1217–1222

    Article  PubMed  CAS  Google Scholar 

  6. Vredenburgh JJ, Desjardins A, Herndon JE, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13:1253–1259

    Article  PubMed  CAS  Google Scholar 

  7. Friedman AH, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740

    Article  PubMed  CAS  Google Scholar 

  8. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Morosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvent temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  PubMed  CAS  Google Scholar 

  9. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280

    PubMed  CAS  Google Scholar 

  10. Iwamoto FM, Abrey LE, Beal K, Gutin PH, Rosenblum ML, Reuter VE, DeAngelis LM, Lassman AB (2009) Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma. Neurology 73(15):1200–1206

    Article  PubMed  CAS  Google Scholar 

  11. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10):779–787

    Article  PubMed  CAS  Google Scholar 

  12. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, de Groot JF, Wick W, Gilbert MR, Lassman AB, Tsien CI, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  13. Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91(3):329–335

    Article  PubMed  CAS  Google Scholar 

  14. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. AJNR Am J Neuroradiol 26(10):2466–2474

    PubMed  Google Scholar 

  15. Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42:1014–1018

    Article  PubMed  CAS  Google Scholar 

  16. Earnest F IV, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166(3):823–827

    PubMed  Google Scholar 

  17. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66(6):865–874

    Article  PubMed  CAS  Google Scholar 

  18. Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB (1987) Stereotactic histological correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62(6):450–459

    PubMed  CAS  Google Scholar 

  19. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34(6):463–469

    Article  PubMed  CAS  Google Scholar 

  20. Brant-Zawadski M, Norman D, Newton TH (1984) Magnetic resonance imaging of the brain: the optimal screening technique. Radiology 152:71–77

    Google Scholar 

  21. Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171

    PubMed  CAS  Google Scholar 

  22. Husstedt HW, Sickert M, Köstler H, Haubitz B, Becker H (2000) Diagnostic value of the fast-FLAIR sequence in MR imaging of intracranial tumors. Eur Radiol 10(5):745–752

    Article  PubMed  CAS  Google Scholar 

  23. Tsuchiya K, Mizutani Y, Hachiya J (1996) Preliminary evaluation of fluid-attenuated inversion-recovery MR in the diagnosis of intracranial tumors. AJNR Am J Neuroradiol 17(6):1081–1086

    PubMed  CAS  Google Scholar 

  24. Essig M, Hawighorst H, Schoenberg SO, Engenhart-Cabillic R, Fuss M, Debus J, Zuna I, Knopp MV, van Kaick G (1998) Fast fluid-attenuated inversion-recovery (FLAIR) MRI in the assessment of intraaxial brain tumors. J Magn Reson Imaging 8(4):789–798

    Article  PubMed  CAS  Google Scholar 

  25. Ellingson BM, Cloughesy TF, Lai A, Nghiemphu PL, Mischel PS, Pope WB (2011) Quantitative volumetric analysis of conventional magnetic resonance imaging response in recurrent glioblastoma treated with bevacizumab. Neuro Oncol 13:401–409

    Article  PubMed  CAS  Google Scholar 

  26. Whittall KP, Mackay AL, Graeb DA, Nugent RA, Li DKB, Paty DW (1997) In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 37(1):34–43

    Article  PubMed  CAS  Google Scholar 

  27. Ananthnarayan S, Bahng J, Roring J, Nghiemphu P, Lai A, Cloughesy T, Pope WB (2008) Time course of imaging changes of GBM during extended bevacizumab treatment. J Neurooncol 88(3):339–347

    Article  PubMed  Google Scholar 

  28. Bokstein F, Shpigel S, Blumenthal DT (2008) Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112(10):2267–2273

    Article  PubMed  CAS  Google Scholar 

  29. Fischer I, Cunliffe CH, Bollo RJ, Raza S, Monoky D, Chiriboga L, Parker EC, Golfinos JG, Kelly PJ, Knopp EA, Gruber ML, Zagzag D, Narayana A (2008) High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro Oncol 10(5):700–708

    Article  PubMed  Google Scholar 

  30. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66(8):1258–1260

    Article  PubMed  CAS  Google Scholar 

  31. Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, Tsien CI, Mukherji S, Quint DJ, Gebarski SS, Robertson PL, Junck L, Rehemtulla A, Ross BD (2005) Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci 102(15):5524–5529

    Article  PubMed  CAS  Google Scholar 

  32. Hamstra DA, Galbán CJ, Meyer CR, Johnson TD, Sundgren PC, Tsien CI, Lawrence TS, Junck L, Ross DJ, Rehemtulla A, Ross BD, Chenevert TL (2008) Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival. J Clin Oncol 26(10):3387–3394

    Article  PubMed  Google Scholar 

  33. Ellingson BM, Malkin MG, Rand SD, Connelly JM, Quinsey C, LaViolette PS, Bedekar DP, Schmainda KM (2010) Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. J Magn Reson Imaging 31(3):538–548

    Article  PubMed  Google Scholar 

  34. Galbán CJ, Chenevert TL, Meyer CR, Tsien C, Lawrence TS, Hamstra DA, Junck L, Sundgren PC, Johnson TD, Ross DJ, Rehemtulla A, Ross BD (2009) The parametric response map is an imaging biomarker for early cancer treatment outcome. Nat Med 15(5):572–576

    Article  PubMed  Google Scholar 

  35. Di Perri C, Battaglini M, Stromillo ML, Bartolozzi ML, Guidi L, Federico A, SDe Stefano N (2008) Voxel-based assessment of differences in damage and distribution of white matter lesions between patients with primary progressive and relapsing-remitting multiple sclerosis. Arch Neurol 65(2):236–243

    Article  PubMed  Google Scholar 

  36. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, Satyamurthy N, Pope W, Lai A, Phelps ME, Cloughesy T (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714–4721

    Article  PubMed  CAS  Google Scholar 

  37. Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69(13):5296–5300

    Article  PubMed  CAS  Google Scholar 

  38. Pope WB, Kim HJ, Huo J, Alger J, Brown MS, Gjertson D, Sai V, Young JR, Tekchandani L, Cloughesy TF, Mischel PS, Lai A, Nghiemphu PL, Rahmanuddin S, Goldin J (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252(1):182–189

    Article  PubMed  Google Scholar 

  39. Ellingson BM, Malkin MG, Rand SD, Hoyt A, Connelly J, Bedekar DP, Kurpad SN, Schmainda KM (2009) Comparison of cytotoxic and anti-angiogenic treatment responses using functional diffusion maps in FLAIR abnormal regions. Proc Int Soc Mag Reson Med 17:1010

    Google Scholar 

  40. Ellingson BM, Malkin MG, Rand SD, LaViolette PS, Connelly JM, Mueller WM, Schmainda KM (2011) Volumetric analysis of functional diffusion maps (fDMs) is a predictive imaging biomarker for cytotoxic and anti-angiogenic treatments in malignant gliomas. J Neurooncol 102:95–103

    Article  PubMed  Google Scholar 

  41. Georgiades CS, Itoh R, Golay X, van Zijl PC, Melhem ER (2001) MR imaging of the human brain at 1.5 T: regional variations in transverse relaxation rates in the cerebral cortex. AJNR Am J Neuroradiol 22(9):1732–1737

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from Brain Tumor Funders Collaborative (WBP); Art of the Brain (TFC); Ziering Family Foundation in memory of Sigi Ziering (TFC); Singleton Family Foundation (TFC); and Clarence Klein Fund for Neuro-Oncology (TFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin M. Ellingson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellingson, B.M., Cloughesy, T.F., Lai, A. et al. Quantification of edema reduction using differential quantitative T2 (DQT2) relaxometry mapping in recurrent glioblastoma treated with bevacizumab. J Neurooncol 106, 111–119 (2012). https://doi.org/10.1007/s11060-011-0638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0638-x

Keywords

Navigation