Skip to main content

Advertisement

Log in

Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas

  • lab. Investigation-human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The c-Jun NH2–terminal kinase (JNK), which belongs to mitogen-activated protein kinase family, plays a major role in apoptosis in various cell types. JNK activation, however, also contributes to proliferation, survival, and tumorigenesis in some tumors, including gliomas. In this study, we used an immunohistochemical approach to examine the activation status of JNK of 226 gliomas in a high-density tissue microarray comprising all WHO codified WHO diffuse glioma subtypes and grades. The results were correlated with grade and EGFR expression status. Constitutively activated JNK (pJNK) was detected in 90.5%, 62.9% and 17.5% of WHO grade IV, III and II gliomas, respectively (p < 0.001). pJNK expression was not detected in the astrocytes or oligodendrocytes of any of 10 normal cerebral and cerebellar brain tissue samples. Among the 76 diffuse gliomas that exhibited EGFR expression, 63 (82.9%) were positive for pJNK. In contrast, only 50% (36/72) of the gliomas that were negative for EGFR were positive for pJNK (p < 0.0001). Overexpression of EGFR vIII in U87 cells or EGF treatment of U87-EGFR stable cells led to marked increase in JNK activation compared to parental U87 cells. Our data thus provide strong support for the hypothesis that JNK activation plays a role in the tumorigenesis and/or progression of diffuse gliomas, and suggests that EGFR is involved in constitutive JNK activation in diffuse gliomas. The ability to inhibit JNK activation might confer increased sensitivity to therapeutic modalities targeting this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

JNK:

c-Jun NH2-terminal kinase

EGFR:

Epidermal growth factor receptor

MAPK:

Mitogen-activated protein kinase

References

  1. Cavenee WK, Furnari FB, Nagane M et al (2000) Diffusely infiltrating astrocytomas. In: Keilhues PCW (ed) Pathology & genetics: tumors of the nervous system. IARC Press, Lyon, pp 9–51

    Google Scholar 

  2. Burger PC, Vogel FS, Green SB et al (1985) Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 56:1106–1111

    Article  PubMed  CAS  Google Scholar 

  3. Daumas-Duport C, Scheithauer B, O’Fallon J et al (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62:2152–2165

    Article  PubMed  CAS  Google Scholar 

  4. Kim TS, Halliday AL, Hedley-Whyte ET et al (1991) Correlates of survival and the Daumas-Duport grading system for astrocytomas. J Neurosurg 74:27–37

    Article  PubMed  CAS  Google Scholar 

  5. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  6. Wang SI, Puc J, Li J et al (1997) Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 57:4183–4186

    PubMed  CAS  Google Scholar 

  7. Tohma Y, Gratas C, Biernat W et al (1998) PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas. J Neuropathol Exp Neurol 57:684–689

    PubMed  CAS  Google Scholar 

  8. Teng DH, Hu R, Lin H et al (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57:5221–5225

    PubMed  CAS  Google Scholar 

  9. Steck PA, Lin H, Langford LA et al (1999) Functional and molecular analyses of 10q deletions in human gliomas. Genes Chromosomes Cancer 24:135–143

    Article  PubMed  CAS  Google Scholar 

  10. Ohgaki H (2005) Genetic pathways to glioblastomas. Neuropathology 25:1–7

    Article  PubMed  Google Scholar 

  11. Antonyak MA, Kenyon LC, Godwin AK et al (2002) Elevated JNK activation contributes to the pathogenesis of human brain tumors. Oncogene 21:5038–5046

    Article  PubMed  CAS  Google Scholar 

  12. Cui J, Han SY, Wang C et al (2006) c-Jun NH(2)-terminal kinase 2alpha2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res 66:10024–10031

    Article  PubMed  CAS  Google Scholar 

  13. Kennedy NJ, Davis RJ (2003) Role of JNK in tumor development. Cell Cycle 2:199–201

    PubMed  CAS  Google Scholar 

  14. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  15. Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  16. Wang H, Wang H, Zhang W et al (2002) Tissue microarrays: applications in neuropathology research, diagnosis, and education. Brain Pathol 12:95–107

    Article  PubMed  Google Scholar 

  17. Wang H, Wang H, Zhang W et al (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951

    Article  PubMed  CAS  Google Scholar 

  18. Tsuiki H, Tnani M, Okamoto I et al (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res 63:250–255

    PubMed  CAS  Google Scholar 

  19. Butterfield L, Storey B, Maas L et al (1997) c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem 272:10110–10116

    Article  PubMed  CAS  Google Scholar 

  20. Garay M, Gaarde W, Monia BP et al (2000) Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochem Pharmacol 59:1033–1043

    Article  PubMed  CAS  Google Scholar 

  21. Hreniuk D, Garay M, Gaarde W et al (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59:867–874

    PubMed  CAS  Google Scholar 

  22. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  PubMed  CAS  Google Scholar 

  23. Kapoor GS, O’Rourke DM (2003) Mitogenic signaling cascades in glial tumors. Neurosurgery 52:1425–1434

    Article  PubMed  Google Scholar 

  24. Preusser M, Haberler C, Hainfellner JA (2006) Malignant glioma: neuropathology and neurobiology. Wien Med Wochenschr 156:332–337

    Article  PubMed  Google Scholar 

  25. Antonyak MA, Moscatello DK, Wong AJ (1998) Constitutive activation of c-Jun N-terminal kinase by a mutant epidermal growth factor receptor. J Biol Chem 273:2817–2822

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huamin Wang.

Additional information

Jian Yi Li and Hua Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.Y., Wang, H., May, S. et al. Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol 88, 11–17 (2008). https://doi.org/10.1007/s11060-008-9529-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9529-1

Keywords

Navigation