Skip to main content

Advertisement

Log in

PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium

  • LABORATORY INVESTIGATION
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastomas are a highly aggressive brain tumor, with one of the highest rates of new blood vessel formation. In this study we used a combined experimental and bioinformatics strategy to determine which genes were highly expressed and specific for glioblastoma endothelial cells (GBM-ECs), compared to gene expression in normal tissue and endothelium. Starting from fresh glioblastomas, several rounds of negative and positive selection were used to isolate GBM-ECs and extract total RNA. Using Serial Analysis of Gene Expression (SAGE), 116,259 transcript tags (35,833 unique tags) were sequenced. From this expression analysis, we found 87 tags that were not expressed in normal brain. Further subtraction of normal endothelium, bone marrow, white blood cell and other normal tissue transcripts resulted in just three gene transcripts, ANAPC10, PLXDC1(TEM7), and CYP27B1, that are highly specific to GBM-ECs. Immunohistochemistry with an antibody for PLXDC1 showed protein expression in GBM microvasculature, but not in the normal brain endothelium tested. Our results suggest that this study succeeded in identifying GBM-EC specific genes. The entire gene expression profile for the GBM-ECs and other tissues used in this study are available at SAGE Genie (http://cgap.nci.nih.gov/SAGE). Functionally, the protein products of the three tags most specific to GBM-ECs have been implicated in processes critical to endothelial cell proliferation and differentiation, and are potential targets for anti-angiogenesis based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  PubMed  CAS  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol (Berl) 109:93–108

    Article  Google Scholar 

  3. Davis FG, Freels S, Grutsch J, Barlas S, Brem S (1998) Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on surveillance, epidemiology, and end results (seer) data, 1973–1991. J Neurosurg 88:1–10

    Article  PubMed  CAS  Google Scholar 

  4. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncol 1:44–51

    Article  PubMed  CAS  Google Scholar 

  5. Wiltshire RN, Rasheed BK, Friedman HS, Friedman AH, Bigner SH (2000) Comparative genetic patterns of glioblastoma multiforme: potential diagnostic tool for tumor classification. Neuro-oncol 2:164–173

    Article  PubMed  CAS  Google Scholar 

  6. Lal A, Peters H, St Croix B, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ (2001) Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93:1337–1343

    Article  PubMed  CAS  Google Scholar 

  7. Rickman DS, Bobek MP, Misek DE, Kuick R, Blaivas M, Kurnit DM, Taylor J, Hanash SM (2001) Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res 61:6885–6891

    PubMed  CAS  Google Scholar 

  8. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH, Riggins GJ (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62:3335–3339

    PubMed  CAS  Google Scholar 

  9. Mischel PS, Shai R, Shi T, Horvath S, Lu KV, Choe G, Seligson D, Kremen TJ, Palotie A, Liau LM, Cloughesy TF, Nelson SF (2003) Identification of molecular subtypes of glioblastoma by gene expression profiling. Oncogene 22:2361–2373

    Article  PubMed  CAS  Google Scholar 

  10. Boon K, Edwards JB, Eberhart CG, Riggins GJ (2004) Identification of astrocytoma associated genes including cell surface markers. BMC Cancer 4:39

    Article  PubMed  CAS  Google Scholar 

  11. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, McDonough WS, Sloan A, Coons SW, Berens ME (2005) Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7:7–16

    Article  PubMed  CAS  Google Scholar 

  12. Giese A, Loo MA, Rief MD, Tran N, Berens ME (1995) Substrates for astrocytoma invasion. Neurosurgery 37:294–301; discussion 301–292

  13. Gladson CL (1999) The extracellular matrix of gliomas: modulation of cell function. J Neuropathol Exp Neurol 58:1029–1040

    PubMed  CAS  Google Scholar 

  14. Belot N, Rorive S, Doyen I, Lefranc F, Bruyneel E, Dedecker R, Micik S, Brotchi J, Decaestecker C, Salmon I, Kiss R, Camby I (2001) Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features. Glia 36:375–390

    Article  PubMed  CAS  Google Scholar 

  15. Rao RD, Uhm JH, Krishnan S, James CD (2003) Genetic and signaling pathway alterations in glioblastoma: relevance to novel targeted therapies. Front Biosci 8:e270–e280

    Article  PubMed  CAS  Google Scholar 

  16. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  PubMed  CAS  Google Scholar 

  17. Rao JS (2003) Molecular mechanisms of glioma invasiveness: The role of proteases. Nat Rev Cancer 3:489–501

    Article  PubMed  CAS  Google Scholar 

  18. Lefranc F, Brotchi J, Kiss R (2005) Possible future issues in the treatment of glioblastomas: Special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol 23:2411–2422

    Article  PubMed  CAS  Google Scholar 

  19. Bogler O, Mikkelsen T (2003)Angiogenesis in glioma: Molecular mechanisms and roadblocks to translation. Cancer J 9:205–213

    Article  PubMed  Google Scholar 

  20. Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG (2004) Genetic and hypoxic regulation of angiogenesis in gliomas. J. Neurooncol 70:229–243

    Article  PubMed  Google Scholar 

  21. Kargiotis O, Rao JS, Kyritsis AP (2006) Mechanisms of angiogenesis in gliomas. J Neurooncol

  22. Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ (2004) Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Brain Res Rev 45:143–163

    Article  PubMed  CAS  Google Scholar 

  23. Bogler O, Mikkelsen T (2005) Angiogenesis and apoptosis in glioma: Two arenas for promising new therapies. J Cell Biochem 96:16–24

    Article  PubMed  CAS  Google Scholar 

  24. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  25. SL, Madden BP, Cook M, Nacht WD, Weber MR, Callahan Y, Jiang MR, Dufault X, Zhang W, Zhang J, Walter-Yohrling C, Rouleau VR, Akmaev CJ, Wang X, Cao TB, St Martin BL, Roberts BA, Teicher KW, Klinger RV, Stan B, Lucey EB, Carson-Walter J, Laterra KA, Walter (2004) Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 165:601–608

    Google Scholar 

  26. Boon K, Riggins GJ (2003) Sage as a strategy to isolate cancer-related genes. Methods Mol Biol 222:463–479

    PubMed  CAS  Google Scholar 

  27. Wendt KS, Vodermaier HC, Jacob U, Gieffers C, Gmachl M, Peters JM, Huber R, Sondermann P (2001) Crystal structure of the apc10/doc1 subunit of the human anaphase-promoting complex. Nat Struct Biol 8:784–788

    Article  PubMed  CAS  Google Scholar 

  28. Grossberger R, Gieffers C, Zachariae W, Podtelejnikov AV, Schleiffer A, Nasmyth K, Mann M, Peters JM (1999) Characterization of the doc1/apc10 subunit of the yeast and the human anaphase-promoting complex. J Biol Chem 274:14500–14507

    Article  PubMed  CAS  Google Scholar 

  29. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St Croix B (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61:6649–6655

    PubMed  CAS  Google Scholar 

  30. Lee HK, Bae HR, Park HK, Seo IA, Lee EY, Suh DJ (2005) Park HT Cloning, characterization and neuronal expression profiles of tumor endothelial marker 7 in the rat brain. Brain Res. Mol Brain Res 136:189–198

    Article  PubMed  CAS  Google Scholar 

  31. Nanda A, Buckhaults P, Seaman S, Agrawal N, Boutin P, Shankara S, Nacht M, Teicher B, Stampfl J, Singh S, Vogelstein B, Kinzler KW, St Croix B (2004) Identification of a binding partner for the endothelial cell surface proteins tem7 and tem7r. Cancer Res 64:8507–8511

    Article  PubMed  CAS  Google Scholar 

  32. Lee HK, Seo IA, Park HK, Park HT (2006) Identification of the basement membrane protein nidogen as a candidate ligand for tumor endothelial marker 7 in vitro and in vivo. FEBS Lett 580:2253–2257

    Article  PubMed  CAS  Google Scholar 

  33. Wang XQ, Sheibani N, Watson JC (2005) Modulation of tumor endothelial cell marker 7 expression during endothelial cell capillary morphogenesis. Microvasc Res 70:189–197

    Article  PubMed  CAS  Google Scholar 

  34. Zehnder D, Bland R, Chana RS, Wheeler DC, Howie AJ, Williams MC, Stewart PM, Hewison M (2002) Synthesis of 1,25–dihydroxyvitamin d (3) by human endothelial cells is regulated by inflammatory cytokines: A novel autocrine determinant of vascular cell adhesion. J.Am Soc Nephrol 13:621–629

    PubMed  CAS  Google Scholar 

  35. Diesel B, Radermacher J, Bureik M, Bernhardt R, Seifert M, Reichrath J, Fischer U, Meese E (2005) Vitamin d (3) metabolism in human glioblastoma multiforme: Functionality of cyp27b1 splice variants, metabolism of calcidiol, and effect of calcitriol. Clin Cancer Res 11:5370–5380

    Article  PubMed  CAS  Google Scholar 

  36. Dwivedi PP, Anderson PH, Omdahl JL, Grimes HL, Morris HA, May BK (2005) Identification of growth factor independent-1 (gfi1) as a repressor of 25–hydroxyvitamin d 1-alpha hydroxylase (cyp27b1) gene expression in human prostate cancer cells. Endocr Relat Cancer 12:351–365

    Article  PubMed  CAS  Google Scholar 

  37. Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, Ahmed Rasheed BK, Tourt-Uhlig SE, Herndon JE 2nd, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS (2004) Phase ii trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142

    Article  PubMed  CAS  Google Scholar 

  38. Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase b/akt, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887

    Article  PubMed  CAS  Google Scholar 

  39. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to egfr kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  40. Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Kuwano M, Ono M (2002) Zd1839 (iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62:2554–2560

    PubMed  CAS  Google Scholar 

  41. Hirata A, Uehara H, Izumi K, Naito S, Kuwano M, Ono M (2004) Direct inhibition of egf receptor activation in vascular endothelial cells by gefitinib (‘iressa’, zd1839). Cancer Sci 95:614–618

    Article  PubMed  CAS  Google Scholar 

  42. Bozec A, Formento P, Ciccolini J, Fanciullino R, Padovani L, Murraciole X, Fischel JL, Milano G (2005) Response of endothelial cells to a dual tyrosine kinase receptor inhibition combined with irradiation. Mol Cancer Ther 4:1962–1971

    Article  PubMed  CAS  Google Scholar 

  43. Yoshiura K, Nakaoka T, Nishishita T, Sato K, Yamamoto A, Shimada S, Saida T, Kawakami Y, Takahashi TA, Fukuda H, Imajoh-Ohmi S, Oyaizu N, Yamashita N (2005) Carbonic anhydrase ii is a tumor vessel endothelium-associated antigen targeted by dendritic cell therapy. Clin Cancer Res 11:8201–8207

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Virginia & D.K. Ludwig Fund and the National Institutes of Health (CGAP contract S98–146 and R01 NS052507). Gregory J. Riggins is the recipient of the Irving J. Sherman M.D. Research Professorship in Neurosurgery Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Riggins.

Additional information

Conflict of interest: The authors declare that they have no affiliations that would constitute a financial conflict of interest relating to the subject matter of this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaty, R.M., Edwards, J.B., Boon, K. et al. PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium. J Neurooncol 81, 241–248 (2007). https://doi.org/10.1007/s11060-006-9227-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9227-9

Keywords

Navigation