Skip to main content

Advertisement

Log in

A Novel Spectral Index for Identifying Ferronickel (Fe–Ni) Laterites from Sentinel 2 Satellite Data

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Field geological mapping is the initial step of preliminary research in mining. However, in the last decades, the rapid progress of remote sensing data processing and its use for reconnaissance of geological outcrops for the purpose of locating possible mining sites gained increasing attention due to the significant time and cost savings. In this study, a new methodology, focused on mapping ferronickel (Fe–Ni) laterite deposits by using Sentinel-2 satellite data, is introduced. It describes a novel spectral index (called laterite spectral index (LSI)) that enhances laterite surface outcrops. To the best of our knowledge, LSI is the first spectral index tailored for this task, concerning minerals that are simultaneously rich in Fe and Ni. The LSI was applied on a continuum removed image by taking advantage of the spectral features present in two specific spectral areas of 490–560 nm and 842–945 nm. The entire methodology was tested and validated on four different excavation sites in eastern Central Greece based on known drillholes. In all excavation sites, the proposed LSI compared favorably with other relative spectral indices proposed in the literature for the detection of Fe-bearing minerals or Fe-oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. The logistic function \(f(x)\) takes values in the range \(\left(\mathrm{0,1}\right)\), with \(f(x)\to 0\), as \(x\to -\infty\), \(f(x)\to 1\), as \(x\to +\infty\) and \(f\left(x\right)=\frac{1}{2}\), for \(x=0\). Its graph is S-shaped within the above limits.

References

  • Abrams, M., & Hook, S. H. (1995). Simulated aster data for geologic studies. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 692–699.

    Article  Google Scholar 

  • Abrams, M., Tsu, H., Hulley, G., Iwao, K., Pieri, D., Cudahy, T., & Kargel, J. (2015). The advanced spaceborne thermal emission and reflection radiometer (aster) after fifteen years: Review of global products. International Journal of Applied Earth Observation and Geoinformation, 38, 292–301.

    Article  Google Scholar 

  • Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., & Chakouri, M. (2020). Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117, 103332.

    Article  Google Scholar 

  • Alevizos, G., (1997). Mineralogy, geochemistry and origin of the sedimentary Fe-Ni ores of Lokris. PhD thesis. Technical University of Crete, 245 p.p. https://doi.org/10.12681/eadd/8725.

  • Antoniades, P. A., & Vgenopoulos, A. G. (1987). Study of the bauxitic Ni Laterite north of Kokkino area, Lokris. Miner Wealth, 65, 51–60.

    Google Scholar 

  • Apostolikas A., (2007). The iron nickel deposit of Kopaida basin in Boiotia prefecture. PhD, Technical University of Crete, Chania, Greece. https://doi.org/10.12681/edd/14504

  • Bedell, R., Crosta, A. P., & Grunsky, E. (2009). Remote Sensing and Spectral geology. Reviews in Economic Geology, 16, 177–198.

    Google Scholar 

  • Bishop, C.,M., (2006). Pattern recognition and machine learning. Springer Science and business Media, LLC ISBN-10:0–387–31073–8 ISBN-13: 978–0387–31073–2.

  • Bishop, C., Rivard, B., de Souza Filho, C., & van der Meer, F. (2018). Geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 64, 267–274.

    Article  Google Scholar 

  • Burns, R. G. (1993). Mineralogical applications of crystal field theory (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511524899

    Book  Google Scholar 

  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy—quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.

    Article  Google Scholar 

  • Cloutis, E. A. (1996). Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. International Journal of Remote Sensing, 17(12), 2215–2242.

    Article  Google Scholar 

  • Cudahy, T., Hewson, R., (2002). ASTER geological case histories: porphyry-skarn epithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. In: Annual General Meeting of the Geological Remote Sensing Group ‘ASTER Unveiled’, Burlington House, Piccadilly, London, UK.

  • Economou-Eliopoulos, M., Eliopoulos, D.G., Apostolikas, A., Maglaras, K., (1997). Precious and rare earth element distribution in Ni-laterite deposits Lokris area, Central Greece, in Proceedings of the fourth Biennial SGA Meeting. Edited by Turku/Finland 411–413.

  • Eliopoulos, D. G., & Economou-Eliopoulos, M. (2000). Geochemical and mineralogical characteristics of Fe–Ni and bauxitic–laterite deposits of Greece. Ore Geology Reviews, 16, 41–58.

    Article  Google Scholar 

  • Fal. S., Maanan, M., Baidder, L., Rhinane, H., (2019). The contribution of Sentinel-2 satellite images for geological mapping in the south of Tafilalet basin (Eastern Anti-Atlas, Morocco), Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci., XLII-4/W12, 75–82.

  • Ge, W., Cheng, Q., Jing, L., Fei, W., Zhao, M., & Ding, H. (2020). Assessment of the Capability of Sentinel-2 Imagery for Iron-Bearing Minerals Mapping: A Case Study in the Cuprite Area. Nevada Remote Sensing, 12(18), 3028.

    Article  Google Scholar 

  • Goetz, A. F. H., & Rowan, L. C. (1981). Geologic remote-sensing. Science, 211(4484), 781–791.

    Article  Google Scholar 

  • Gupta, R.P., 2018. Remote Sensing Geology. Ed. Springer-Verlang, Berlin, Heidelberg, Germany. https://doi.org/10.1007/978-3-662-55876-8.

  • Hellenic Survey of Geology and Mineral Exploration, (1990) Geological Maps of Atalanti, Vayia, Larymna sheets.

  • Henrich, V., Jung, A., Götze, C., Sandow, C., Thürkow, D., Gläber, C., (2009). Development of an online indices database: Motivation, concept and implementation. 6th EARSeL Imaging Spectroscopy SIG Workshop Innovative Tool for Scientific and Commercial Environment Applications Tel Aviv, Israel.

  • Hu, B., Xu, Y., Wan, B., Wu, X., & Yi, G. (2018). Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geology Reviews, 101, 384–397.

    Article  Google Scholar 

  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42(3), 501–513. https://doi.org/10.1190/1.1440721

    Article  Google Scholar 

  • Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74(7), 1613–1629.

    Article  Google Scholar 

  • Ibrahim, E., Barnabe, P., Ramanaidou, E., & Pirard, E. (2018). Mapping mineral chemistry of a lateritic outcrop in New Caledonia through generalized regression using Sentinel-2 and field reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 73, 653–665.

    Article  Google Scholar 

  • Jackson, R. D. (1983). Spectral Indices in N-Space. Remote Sensing of Environment, 13(5), 409–421.

    Article  Google Scholar 

  • Kalatha, S., & Economou-Eliopoulos, M. (2015). Framboidal pyrite and bacterio-morphic goethite at transitional zones between FeNi laterites and limestones: Evidence from Lokris, Greece. Ore Geology Reviews, 65, 413–425.

    Article  Google Scholar 

  • Kalinowski, A., Oliver, S., (2004). ASTER Mineral Index Processing Manual. Remote Sensing Applications Geoscience Australia, (available online in https://www.ga.gov.au/webtemp/image_cache/GA7833.pdf).

  • Kruse, F.,A., Hauff, P.,L.,(1990). Remote sensing clay mineral investigations for geologic applications using visible/infrared imaging spectroscopy. Proceedings of the 9th International Clay conference, Strasbourg, 1989, V.C. Farmer and Y. Tardy (Eds) Sci. Geol. Mem. 89, 43–51.

  • Kruse, A., (2010). Mineral mapping using spectroscopy: from field measurements to airborne and satellite-based spectrometry. In Proceedings ASARS Symposium Boulder, Colorado.

  • Kruse, A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapirom, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44, 145–163.

    Article  Google Scholar 

  • Lanfranchi, R.A., Cerqueira, Pereira Cruz S., Rocha, F., (2021). Application of remote sensing and reflectance spectroscopy to explore iron-enriched domains in the north region of the intracontinental sector of the Aracuai West Congo Orogen. Ore Geology Reviews, 128, 103916.

  • Langford, R. L. (2015). Temporal merging of remote sensing data to enhance spectral regolith lithological and alteration patterns for regional mineral exploration. Ore Geology Reviews, 68(14), 29.

    Google Scholar 

  • Mariolakos I., Fountoulis I., Kranis H., (2001). Geology and tectonics: Sterea Hellas area. Engineering Geology and the Environment, Marinos, Koukis, Tsiambaos and Stournaras (Eds.), Swets & Zeitlinger, Lisse, ISBN 9054108827, 3971–3986.

  • Maynard Barry, J. (1983). Geochemistry of Sedimentary Ore Deposits, Springer Verlag. E-book ISBN 978-1-4613-9493-8. https://doi.org/10.1007/978-1-4613-9493-8.

  • Papanikolaou, D., (2021). The Geology of Greece, Springer. E-book ISBN 978-3-030-60731-9. https://doi.org/10.1007/978-3-030-30731-9.

  • Papanikolaou, D. (2013). Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics, 595–596, 1–24.

    Article  Google Scholar 

  • Peyghambari, S., & Zhang, Y. (2021). Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. Journal of Applied Remote Sensing, 15(3), 031501. https://doi.org/10.1117/1.JRS.15.031501

  • Pour, A. B., & Hashim, M. (2012). Identifying areas of high economic potential copper mineralization using ASTER data in the urumieh-dokhar volcanic belt Iran. Advanced Space Research, 49, 753–769.

    Article  Google Scholar 

  • Purwadi, I., van der Werff, H., Lievens, C., (2020). Targeting rare earth element bearing mine tailings on Bangka Island, Indonesia, with Sentinel-2 MSI. International Journal of Applied Earth Observation and Geoinformation, 88, 102055.

  • Rowan, L. C., & Mars, J. C. (2003). Lithologic mapping in the mountain pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.

    Article  Google Scholar 

  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14, 157–183.

    Article  Google Scholar 

  • Schellmann, W. (1971). Uber beziehungen lateritischer eisen Nickel-Aluminium und Manganerze zu ihrem Ausgangsgesteinen. Mineral Deposita. https://doi.org/10.1007/BF00201886

    Article  Google Scholar 

  • Schellmann, W. (1982). Eine neue Lateritdefinition. Geol Jahrb D, 38, 31–47.

  • Soydan, H., Koz, A., & Şebnem Düzgün, H. (2021). Secondary iron mineral detection via hyperspectral unmixing analysis with sentinel-2 imagery. International Journal of Applied Earth Observation and Geoinformation, 101, 102343. https://doi.org/10.1016/j.jag.2021.102343

  • Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., Sutley, S. J., Snee, L. W., Lowers, H. A., Post, J. L., Stoffregen, R. E., & Ashley, R. P. (2014). Mapping advanced argillic alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Economic Geology, 109(5), 1179–1221. https://doi.org/10.2113/econgeo.109.5.1179.

  • Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition (Fourth Edition). Academic Press.

  • Tziritis, E. P. (2008). Hydrogeochemical and environmental study of east Kopaida—Yliki karstic system and assessment of vulnerability with the use of Geoinformatics. National Kapodistrian University of Athens (NKUA). https://doi.org/10.12681/eadd/23537. http://hdl.handle.net/10442/hedi/23537

  • Valeton, I., Biermann, M., Reche, R., & Rosenberg, F. (1987). Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2, 359–404.

    Article  Google Scholar 

  • Van der Meer, F., Kopackova, V., Kaicka, L., Harald, M. A., Van der Werff, H., van Ruitenbeek, F. J. A., & Bakker, W. H. (2018). Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system. Int. Appl. Earth Obs. Geoinformation, 64, 237–248.

    Article  Google Scholar 

  • Van der Meer, F., & Van der Werff, H. (2014). Potential of ESA’s Sentinel-2 for geological applications. Remote Sensing of Environment, 148, 124–133.

    Article  Google Scholar 

  • Van der Meer, F., Van der Werff, H., Van Ruitenbeek, F., Hecker, C., Bakker, H., Noomen, M., Van der Meidje, M., Carranza, E. J. M., de Smeth, B., & Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128.

    Article  Google Scholar 

  • Van der Werff, H., & Van der Meer, F. (2015). Sentinel-2 for mapping iron absorption feature parameters. Remote Sens., 7, 12635–12653.

    Article  Google Scholar 

  • Van der Werff, H., & Van der Meer, F. (2016). Sentinel-2A MSI and landsat 8 OLI provide data continuity for geological remote Sensing. Remote Sensing, 8, 883.

    Article  Google Scholar 

  • Vural, A., Akpinar, I., & Ferkan Sipahi, F. (2021). Mineralogical and chemical characteristics of clay areas, Gümüşhane Region (NE Turkey), and their detection using the Crósta technique with landsat 7 and 8 images. Natural Resources Research, 30(6), 3955–3985.

    Article  Google Scholar 

  • Yamagushi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & PNiel, M. (1998). The advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071.

    Article  Google Scholar 

  • Yamagushi, Y., & Naito, C. (2003). Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing, 24(22), 4311–4323.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by LARCO GMMSA. We thank Dr. Athanasios Apostolikas (Head of Exploration GMM S.A. LARCO) and Mr. Christos Kotakis (Director of Ag. Ioannis Mine LARCO GMM S.A.) for their permission to use the company’s data.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Anifadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anifadi, A., Sykioti, O., Koutroumbas, K. et al. A Novel Spectral Index for Identifying Ferronickel (Fe–Ni) Laterites from Sentinel 2 Satellite Data. Nat Resour Res 31, 1203–1224 (2022). https://doi.org/10.1007/s11053-022-10055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10055-6

Keywords

Navigation