Skip to main content
Log in

An Improved Prediction-Area Plot for Prospectivity Analysis of Mineral Deposits

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

In this paper an improved prediction-area plot has been developed. This type of plot includes performance measures similar to other existing methods (receiver operating characteristics, success-rate curves and ordinary prediction-area plots) and, therefore, offers a reliable method for evaluating the performance of spatial evidence maps and prospectivity models. To demonstrate the reliability of the improved prediction-area plot proposed, we investigated the benefits of augmented targeting criteria through remotely sensed exploration features, compared to only geological map-derived criteria, for mineral prospectivity analysis using as an example the podiform chromite deposits of the Sabzevar Ophiolite Belt, Iran. The application of the newly developed improved prediction-area plot to the prospectivity models generated in this study indicated that the augmented targeting criteria by using remote sensing data perform better than non-updated geological map-derived criteria, and that model effectiveness can be improved by using an integrated approach that entails geologic remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Abrams, M. J., Rothery, D. A., & Pontual, A. (1988). Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images. Tectonophysics, 151, 387–401.

    Article  Google Scholar 

  • Agterberg, F. P., & Bonham-Carter, G. F. (2005). Measuring the performance of mineral-potential maps. Natural Resources Research, 14, 1–17.

    Article  Google Scholar 

  • Almasi, A., Yousefi, M., & Carranza, E. J. M. (2017). Prospectivity analysis of orogenic gold deposits in Saqez-Sardasht Goldfield, Zagros Orogen, Iran. Ore Geology Reviews, 91, 1066–1080.

    Article  Google Scholar 

  • Almeida, T. I. R., & Souza Filho, C. R. D. (2004). Principal component analysis applied to feature-oriented band ratios of hyperspectral data: A tool for vegetation studies. International Journal of Remote Sensing, 25, 5005–5023.

    Article  Google Scholar 

  • Almeida, T. I. R., Souza Filho, C. R. D., & Rossetto, R. (2006). ASTER and Landsat ETM+ images applied to sugarcane yield forecast. International Journal of Remote Sensing, 27, 4057–4069.

    Article  Google Scholar 

  • Asadi, H. H., Sansoleimani, A., Fatehi, M., & Carranza, E. J. M. (2016). An AHP–TOPSIS predictive model for district-scale mapping of porphyry Cu–Au potential: A case study from Salafchegan Area (Central Iran). Natural Resources Research, 25, 417–429.

    Article  Google Scholar 

  • Asadzadeh, S., & Souza Filho, C. R. D. (2016). A review on spectral processing methods for geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 47, 69–90.

    Article  Google Scholar 

  • Bishop, C., Rivard, B., de Souza Filho, C., & van der Meer, F. (2018). Geological remote sensing. International Journal of Applied Earth Observation and Geoinformation, 64, 267–274.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). Amsterdam: Elsevier.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1989). Weights of evidence modelling: A new approach to mapping mineral potential. Statistical Applications in the Earth Sciences, 89, 171–183.

    Google Scholar 

  • Campos, L. D., de Souza, S. M., de Sordi, D. A., Tavares, F. M., Klein, E. L., & dos Santos Lopes, E. C. (2017). Predictive mapping of prospectivity in the Gurupi orogenic gold belt, north-northeast Brazil: An example of district-scale mineral system approach to exploration targeting. Natural Resources Research, 26, 509–534.

    Article  Google Scholar 

  • Carranza, E. J. M. (2008). Geochemical anomaly and mineral prospectivity mapping in GIS (Vol. 11). Amsterdam: Elsevier.

    Google Scholar 

  • Carranza, E. J. M. (2014). Data-driven evidential belief modeling of mineral potential using few prospects and evidence with missing values. Natural Resources Research, 24, 291–304.

    Article  Google Scholar 

  • Carranza, E. J. M., & Hale, M. (2001). Geologically-constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines. Natural Resources Research, 10, 125–136.

    Article  Google Scholar 

  • Carranza, E. J. M., & Laborte, A. G. (2016). Data-driven predictive modeling of mineral prospectivity using random forests: A case study in Catanduanes Island (Philippines). Natural Resources Research, 25, 35–50.

    Article  Google Scholar 

  • Carranza, E. J. M., Sadeghi, M., & Billay, A. (2015). Predictive mapping of prospectivity for orogenic gold, Giyani greenstone belt (South Africa). Ore Geology Reviews, 71, 703–718.

    Article  Google Scholar 

  • Carranza, E. J. M., Woldai, T., & Chikambwe, E. M. (2005). Application of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi District, Zambia. Natural Resources Research, 14, 47–63.

    Article  Google Scholar 

  • Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12, 340–350.

    Article  Google Scholar 

  • Chen, Y. (2015). Mineral potential mapping with a restricted Boltzmann machine. Ore Geology Reviews, 71, 749–760.

    Article  Google Scholar 

  • Chen, Y., & An, A. (2016). Application of ant colony algorithm to geochemical anomaly detection. Journal of Geochemical Exploration, 164, 75–85.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2016). A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geology Reviews, 74, 26–38.

    Article  Google Scholar 

  • Chen, Y., & Wu, W. (2017). Mapping mineral prospectivity using an extreme learning machine regression. Ore Geology Reviews, 80, 200–213.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51, 109–130.

    Article  Google Scholar 

  • Chung, C. J. F., & Agterberg, F. P. (1980). Regression models for estimating mineral resources from geological map data. Journal of the International Association for Mathematical Geology, 12, 473–488.

    Article  Google Scholar 

  • Chung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451–472.

    Article  Google Scholar 

  • Chung, C. J. F., & Moon, W. M. (1991). Combination rules of spatial geoscience data for mineral exploration. Geoinformatics, 2, 159–169.

    Article  Google Scholar 

  • Crosta, A. P., & Souza Filho, C. R. D. (2003). Searching for gold with ASTER. Earth Observation Magazine, 12, 38–41.

    Google Scholar 

  • Crosta, A. P., & Souza Filho, C. R. D. (2017). Hyperspectral remote sensing for mineral mapping: A case-study at alto Paraíso de Goías, central Brazil. Revista Brasileira de Geociências, 30, 551–554.

    Article  Google Scholar 

  • Crosta, A. P., Souza Filho, C. R. D., Azevedo, F., & Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. International Journal of Remote Sensing, 24, 4233–4240.

    Article  Google Scholar 

  • Du, X., Zhou, K., Cui, Y., Wang, J., Zhang, N., & Sun, W. (2016). Application of fuzzy Analytical Hierarchy Process (AHP) and Prediction-Area (PA) plot for mineral prospectivity mapping: A case study from the Dananhu metallogenic belt, Xinjiang, NW China. Arabian Journal of Geosciences, 9, 298.

    Article  Google Scholar 

  • Eldosouky, A. M., Abdelkareem, M., & Elkhateeb, S. O. (2017). Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130, 28–37.

    Article  Google Scholar 

  • Fabbri, A. G., & Chung, C. J. F. (2008). On blind tests and spatial prediction models. Natural Resources Research, 17, 107–118.

    Article  Google Scholar 

  • Feizi, F., Karbalaei-Ramezanali, A., & Tusi, H. (2017). Mineral potential mapping via TOPSIS with hybrid AHP–Shannon entropy weighting of evidence: A case study for Porphyry-Cu, Farmahin Area, Markazi Province. Iran. Natural Resources Research, 26, 553–570.

    Article  Google Scholar 

  • Gabr, S., Ghulam, A., & Kusky, T. (2010). Detecting areas of high-potential gold mineralization using ASTER data. Ore Geology Reviews, 38, 59–69.

    Article  Google Scholar 

  • Gad, S., & Kusky, T. M. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 44, 196–202.

    Article  Google Scholar 

  • Gad, S., & Kusky, T. M. (2007). ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11, 326–335.

    Article  Google Scholar 

  • Gao, Y., Zhang, Z., Xiong, Y., & Zuo, R. (2016). Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province, China. Ore Geology Reviews, 75, 16–28.

    Article  Google Scholar 

  • Gholami, R., Moradzadeh, A., & Yousefi, M. (2012). Assessing the performance of independent component analysis in remote sensing data processing. Journal of the Indian Society of Remote Sensing, 40, 577–588.

    Article  Google Scholar 

  • Gomez, C., Delacourt, C., Allemand, P., Ledru, P., & Wackerle, R. (2005). Using ASTER remote sensing data set for geological mapping, in Namibia. Physics and Chemistry of the Earth, Parts A/B/C, 30, 97–108.

    Article  Google Scholar 

  • Harris, J. R., Bowie, C., Rencz, A. N., & Graham, D. (1994). Computer-enhancement techniques for the integration of remotely sensed, geophysical, and thematic data for the geosciences. Canadian Journal of Remote Sensing, 20, 210–221.

    Google Scholar 

  • Harris, J. R., & Grunsky, E. C. (2015). Predictive lithological mapping of Canada’s North using Random Forest classification applied to geophysical and geochemical data. Computers & Geosciences, 80, 9–25.

    Article  Google Scholar 

  • Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data-and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.

    Article  Google Scholar 

  • Harris, J. R., Lemkow, D., Jefferson, C., Wright, D., & Falck, H. (2008). Mineral potential modelling for the greater Nahanni ecosystem using GIS based analytical methods. Natural Resources Research, 17, 51–78.

    Article  Google Scholar 

  • Harris, J. R., Wilkinson, L., Heather, K., Fumerton, S., Bernier, M. A., Ayer, J., et al. (2001). Application of GIS processing techniques for producing mineral prospectivity maps—A case study: Mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Natural Resources Research, 10, 91–124.

    Article  Google Scholar 

  • Hashim, M., Pournamdary, M., & Pour, A. B. (2011). Processing and interpretation of advanced space-borne thermal emission and reflection radiometer (ASTER) data for lithological mapping in ophiolite complex. International Journal of Physical Sciences, 6, 6410–6421.

    Google Scholar 

  • Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32, 1283–1298.

    Article  Google Scholar 

  • Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37, 59–72.

    Article  Google Scholar 

  • Jannessary, M. R., Melcher, F., Lodziak, J., & Meisel, T. C. (2012). Review of platinum-group element distribution and mineralogy in chromitite ores from southern Iran. Ore Geology Reviews, 48, 278–305.

    Article  Google Scholar 

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (4th ed.). Upper Saddle River, NJ: Prentice Hall Press.

    Google Scholar 

  • Khan, S. D., & Mahmood, K. (2008). The application of remote sensing techniques to the study of ophiolites. Earth-Science Reviews, 89, 135–143.

    Article  Google Scholar 

  • Kreuzer, O. P., Miller, A. V., Peters, K. J., Payne, C., Wildman, C., Partington, G. A., et al. (2015). Comparing prospectivity modelling results and past exploration data: A case study of porphyry Cu–Au mineral systems in the Macquarie Arc, Lachlan Fold Belt, New South Wales. Ore Geology Reviews, 71, 516–544.

    Article  Google Scholar 

  • McKay, G., & Harris, J. R. (2016). Comparison of the data-driven Random Forests model and a knowledge-driven method for mineral prospectivity mapping: A case study for gold deposits around the Huritz Group and Nueltin Suite, Nunavut, Canada. Natural Resources Research, 25, 125–143.

    Article  Google Scholar 

  • Mihalasky, M. J., & Bonham-Carter, G. F. (2001). Lithodiversity and its spatial association with metallic mineral sites, Great Basin of Nevada. Natural Resources Research, 10, 209–226.

    Article  Google Scholar 

  • Mohebi, A., Mirnejad, H., Lentz, D., Behzadi, M., Dolati, A., Kani, A., et al. (2015). Controls on porphyry Cu mineralization around Hanza Mountain, south-east of Iran: An analysis of structural evolution from remote sensing, geophysical, geochemical and geological data. Ore Geology Reviews, 69, 187–198.

    Article  Google Scholar 

  • Mosier, D. L., Singer, D. A., Moring, B. C., & Galloway, J. P. (2012). Podiform chromite deposits—Database and grade and tonnage models (No. 2012-5157, pp. i-45). United States Geological Survey.

  • Mutele, L., Billay, A., & Hunt, J. P. (2017). Knowledge-driven prospectivity mapping for granite-related polymetallic Sn–F–(REE) mineralization, Bushveld Igneous Complex, South Africa. Natural Resources Research, 26, 535–552.

    Article  Google Scholar 

  • Nezhad, S. G., Mokhtari, A. R., & Rodsari, P. R. (2017). The true sample catchment basin approach in the analysis of stream sediment geochemical data. Ore Geology Reviews, 83, 127–134.

    Article  Google Scholar 

  • Ninomiya, Y. (2003). A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 3, 1552–1554.

    Google Scholar 

  • Ninomiya, Y. (2004). Lithologic mapping with multispectral ASTER TIR and SWIR data. Sensors, Systems, and Next-Generation Satellites VII, 5234, 180–191.

    Article  Google Scholar 

  • Ninomiya, Y., & Fu, B. (2002). Quartz index, carbonate index and SiO2 content index defined for ASTER TIR data. Journal of the Remote Sensing Society of Japan, 22, 50–61.

    Google Scholar 

  • Ninomiya, Y., Fu, B., & Cudahy, T. J. (2005). Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sensing of Environment, 99, 127–139.

    Article  Google Scholar 

  • Nykänen, V. (2008). Radial basis functional link nets used as a prospectivity mapping tool for orogenic gold deposits within the Central Lapland Greenstone Belt, Northern Fennoscandian Shield. Natural Resources Research, 17, 29–48.

    Article  Google Scholar 

  • Nykänen, V., Lahti, I., Niiranen, T., & Korhonen, K. (2015). Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geology Reviews, 71, 853–860.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., & Yousefi, M. (2017). A receiver operating characteristics-based geochemical data fusion technique for targeting undiscovered mineral deposits. Natural Resources Research, 27, 15–28.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016a). Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures. Journal of African Earth Sciences, 114, 228–241.

    Article  Google Scholar 

  • Parsa, M., Maghsoudi, A., Yousefi, M., & Sadeghi, M. (2016b). Recognition of significant multi-element geochemical signatures of porphyry Cu deposits in Noghdouz area, NW Iran. Journal of Geochemical Exploration, 165, 111–124.

    Article  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6, 559–572.

    Article  Google Scholar 

  • Porwal, A. K., Das, R. D., Chaudhary, B., Gonzalez-Alvarez, I., & Kreuzer, O. P. (2015). Fuzzy inference systems for prospectivity modeling of mineral systems and a case-study for prospectivity mapping of surficial Uranium in Yeelirrie Area, Western Australia. Ore Geology Reviews, 71, 839–852.

    Article  Google Scholar 

  • Porwal, A. K., & Kreuzer, O. P. (2010). Introduction to the special issue: Mineral prospectivity analysis and quantitative resource estimation. Ore Geology Reviews, 38, 121–127.

    Article  Google Scholar 

  • Rajabzadeh, M. A., Dehkordi, T. N., & Caran, Ş. (2013). Mineralogy, geochemistry and geotectonic significance of mantle peridotites with high-Cr chromitites in the Neyriz ophiolite from the outer Zagros ophiolite belts, Iran. Journal of African Earth Sciences, 78, 1–15.

    Article  Google Scholar 

  • Rajabzadeh, M. A., Ghasemkhani, E., & Khosravi, A. (2015). Biogeochemical study of chromite bearing zones in Forumad area, Sabzevar ophiolite, Northeastern Iran. Journal of Geochemical Exploration, 151, 41–49.

    Article  Google Scholar 

  • Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., et al. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44, 121–135.

    Article  Google Scholar 

  • Ranjbar, H., & Honarmand, M. (2004). Integration and analysis of airborne geophysical and ETM+ data for exploration of porphyry type deposits in the Central Iranian Volcanic Belt using fuzzy classification. International Journal of Remote Sensing, 25, 4729–4741.

    Article  Google Scholar 

  • Richter, R. (1998). Correction of satellite imagery over mountainous terrain. Applied Optics, 37, 4004–4015.

    Article  Google Scholar 

  • Roshanravan, B., Aghajani, H., Yousefi, M., & Kreuzer, O. (2018). Particle swarm optimization algorithm for neuro-fuzzy prospectivity analysis using continuously weighted spatial exploration data. Natural Resources Research. https://doi.org/10.1007/s11053-018-9385-4.

    Google Scholar 

  • Shafaii Moghadam, H., Rahgooshay, M., & Forouzesh, V. (2010). Geochemical investigation of the nodular chromites in the Forumad ophiolite, NE of Iran. Iranian Journal of Sciences and Technology, 43, 235–245.

    Google Scholar 

  • Shojaat, B., Hassanipak, A. A., Mobasher, K., & Ghazi, A. M. (2003). Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. Journal of Asian Earth Sciences, 21, 1053–1067.

    Article  Google Scholar 

  • Stöcklin, J. (1974). Possible ancient continental margins in Iran. In The geology of continental margins (pp. 873–887). Berlin, Heidelberg: Springer.

  • Tessema, A. (2017). Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex, South Africa. Natural Resources Research, 26, 465–488.

    Article  Google Scholar 

  • Van der Meer, F. D., & De Jong, S. M. (Eds.). (2011). Imaging spectrometry: Basic principles and prospective applications (Vol. 4). Berlin: Springer.

    Google Scholar 

  • Vicente, L. E., & Souza Filho, C. R. D. (2011). Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sensing of Environment, 115, 1824–1836.

    Article  Google Scholar 

  • Yaghubpur, A., & Hassannejad, A. A. (2006). The spatial distribution of some chromite deposits in Iran, using Fry analysis. Journal of Sciences, Islamic Republic of Iran, 17, 147–152.

    Google Scholar 

  • Yousefi, M. (2017). Recognition of an enhanced multi-element geochemical signature of porphyry copper deposits for vectoring into mineralized zones and delimiting exploration targets in Jiroft area, SE Iran. Ore Geology Reviews, 83, 200–214.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015a). Geometric average of spatial evidence data layers: A GIS-based multi-criteria decision-making approach to mineral prospectivity mapping. Computers & Geosciences, 83, 72–79.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2015b). Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling. Computers & Geosciences, 79, 69–81.

    Article  Google Scholar 

  • Yousefi, M., & Carranza, E. J. M. (2016). Data-driven index overlay and Boolean logic mineral prospectivity modeling in greenfields exploration. Natural Resources Research, 25, 3–18.

    Article  Google Scholar 

  • Yousefi, M., Carranza, E. J. M., & Kamkar-Rouhani, A. (2013). Weighted drainage catchment basin mapping of stream sediment geochemical anomalies for mineral potential mapping. Journal of Geochemical Exploration, 128, 88–96.

    Article  Google Scholar 

  • Yousefi, M., Kamkar-Rouhani, A., & Carranza, E. J. M. (2012). Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. Journal of Geochemical Exploration, 115, 24–35.

    Article  Google Scholar 

  • Yousefi, M., & Nykänen, V. (2016). Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. Journal of Geochemical Exploration, 164, 94–106.

    Article  Google Scholar 

  • Zhang, N., Zhou, K., & Du, X. (2017). Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. Journal of African Earth Sciences, 128, 84–96.

    Article  Google Scholar 

  • Zou, K. H., O’Malley, A. J., & Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 115, 654–657.

    Article  Google Scholar 

  • Zuo, R. (2018). Selection of an elemental association related to mineralization using spatial analysis. Journal of Geochemical Exploration, 184, 150–157.

    Article  Google Scholar 

  • Zuo, R., Zhang, Z., Zhang, D., Carranza, E. J. M., & Wang, H. (2015). Evaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in Southwestern Fujian Province, China. Ore Geology Reviews, 71, 502–515.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Geological Survey of Iran for providing the data used in this study. In addition, we greatly appreciate the many constructive comments by Prof. John Carranza, Dr. Mark Mihalasky, Dr. Jeff Harris, and two anonymous reviewers that helped to significantly improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahyar Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshanravan, B., Aghajani, H., Yousefi, M. et al. An Improved Prediction-Area Plot for Prospectivity Analysis of Mineral Deposits. Nat Resour Res 28, 1089–1105 (2019). https://doi.org/10.1007/s11053-018-9439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-018-9439-7

Keywords

Navigation