Skip to main content

Advertisement

Log in

An integrated approach for the systematic evaluation of polymeric nanoparticles in healthy and diseased organisms

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Innovative strategies that utilize nanoparticles (NPs) for a better delivery of drugs and to improve their therapeutic efficacy have been widely studied in many clinical fields, including oncology. To develop safe and reliable devices able to reach their therapeutic target, a hierarchical characterization of NP interactions with biological fluids, cells, and whole organisms is fundamental. Unfortunately, this aspect is often neglected and the development of standardized characterization methods would be of fundamental help to better elucidate the potentials of nanomaterials, even before the loading of the drugs. Here, we propose a multimodal in vitro/in vivo/ex vivo platform aimed at evaluating these interactions for the selection of the most promising NPs among a wide series of materials. To set the system, we used non-degradable fluorescent poly(methyl-methacrylate) NPs of different sizes (50, 100, and 200 nm) and surface charges (positive and negative). First we studied NP stability in biological fluids. Then, we evaluated NP interaction with two cell lines of triple-negative breast cancer (TNBC), 4T1, and MDA-MB231.1833, respectively. We found that NPs internalize in TNBC cells depending on their physico-chemical properties without toxic effects. Finally, we studied NP biodistribution in terms of tissue migration and progressive clearance in breast-cancer bearing mice. The use of highly stable poly(methyl-methacrylate) NPs enabled us to track them for a long time in cells and animals. The application of this platform to other nanomaterials could provide innovative suggestions for the development of a systematic method of characterization to select the most reliable nanodrug candidates for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhter S, Ahmad I, Ahmad MZ, Ramazani F, Singh A, Rahman Z, Ahmad FJ, Storm G, Kok RJ (2013) Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets 13(4):362–378 CCDT-EPUB-20130318-1

    Article  Google Scholar 

  • Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 110(5):1445–1456. doi:10.1111/j.1471-4159.2009.06228.x

    Article  Google Scholar 

  • Barenholz Y (2012) Doxil® — The first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134. doi:10.1016/j.jconrel.2012.03.020

    Article  Google Scholar 

  • Baumann D, Hofmann D, Nullmeier S, Panther P, Dietze C, Musyanovych A, Ritz S, Landfester K, Mailander V (2013) Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine (Lond) 8(5):699–713. doi:10.2217/nnm.12.111

    Article  Google Scholar 

  • Bigini P, Previdi S, Casarin E, Silvestri D, Violatto MB, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M (2013) In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools. ACS Nano. doi:10.1021/nn402669w

    Google Scholar 

  • Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P, Salmona M, Gobbi M (2013) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors (Basel) 12(12):16420–16432. doi:10.3390/s121216420

    Article  Google Scholar 

  • Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10(6):2093–2110. doi:10.1021/mp300697h

    Article  Google Scholar 

  • Cova L, Bigini P, Diana V, Sitia L, Ferrari R, Pesce RM, Khalaf R, Bossolasco P, Ubezio P, Lupi M, Tortarolo M, Colombo L, Giardino D, Silani V, Morbidelli M, Salmona M, Moscatelli D (2013) Biocompatible fluorescent nanoparticles for in vivo stem cell tracking. Nanotechnology 24(24):245603. doi:10.1088/0957-4484/24/24/245603

    Article  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC (2011) Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol 137(2):183–192. doi:10.1007/s00432-010-0957-x

    Article  Google Scholar 

  • Deng ZJ, Morton SW, Ben-Akiva E, Dreaden EC, Shopsowitz KE, Hammond PT (2013) Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. ACS Nano 7(11):9571–9584. doi:10.1021/nn4047925

    Article  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. doi:10.1016/j.jconrel.2013.05.025

    Article  Google Scholar 

  • Dossi M, Ferrari R, Dragoni L, Martignoni C, Gaetani P, D’Incalci M, Morbidelli M, Moscatelli D (2012) Synthesis of fluorescent PMMA-based nanoparticles. Macromol Mater Eng 298(7):771–778. doi:10.1002/mame.201200122

    Article  Google Scholar 

  • Ferrari R, Lupi M, Falcetta F, Bigini P, Paolella K, Fiordaliso F, Bisighini C, Salmona M, D’Incalci M, Morbidelli M, Moscatelli D, Ubezio P (2014) Integrated multiplatform method for in vitro quantitative assessment of cellular uptake for fluorescent polymer nanoparticles. Nanotechnology 25(4):045102. doi:10.1088/0957-4484/25/4/045102

    Article  Google Scholar 

  • Fumagalli S, Coles JA, Ejlerskov P, Ortolano F, Bushell TJ, Brewer JM, De Simoni MG, Dever G, Garside P, Maffia P, Carswell HV (2011) In vivo real-time multiphoton imaging of T lymphocytes in the mouse brain after experimental stroke. Stroke 42(5):1429–1436. doi:10.1161/STROKEAHA.110.603704

    Article  Google Scholar 

  • Fumagalli S, Perego C, Ortolano F, De Simoni MG (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61(6):827–842. doi:10.1002/glia.22474

    Article  Google Scholar 

  • Inoue S, Patil R, Portilla-Arias J, Ding H, Konda B, Espinoza A, Mongayt D, Markman JL, Elramsisy A, Phillips HW, Black KL, Holler E, Ljubimova JY (2012) Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLoS One 7(2):e31070. doi:10.1371/journal.pone.0031070

    Article  Google Scholar 

  • Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8(3):343–357. doi:10.1517/17425247.2011.554818

    Article  Google Scholar 

  • Liechty WB, Peppas NA (2012) Expert opinion: responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm 80(2):241–246. doi:10.1016/j.ejpb.2011.08.004

    Article  Google Scholar 

  • Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4(2):1000164. doi:10.4172/2157-7439.1000164

    Google Scholar 

  • Ma N, Ma C, Li C, Wang T, Tang Y, Wang H, Moul X, Chen Z, Hel N (2013) Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol 13(10):6485–6498

    Article  Google Scholar 

  • Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599. doi:10.1016/j.tips.2009.08.004

    Article  Google Scholar 

  • Malhotra M, Tomaro-Duchesneau C, Saha S, Kahouli I, Prakash S (2013) Development and characterization of chitosan–PEG–TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomed 8:2041–2052. doi:10.2147/IJN.S43683

    Article  Google Scholar 

  • Matsumura Y (2008) Polymeric micellar delivery systems in oncology. Jpn J Clin Oncol 38(12):793–802. doi:10.1093/jjco/hyn116

    Article  Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786. doi:10.1038/nnano.2012.207

    Article  Google Scholar 

  • Mukerjee A, Ranjan AP, Vishwanatha JK (2012) Combinatorial nanoparticles for cancer diagnosis and therapy. Curr Med Chem 19(22):3714–3721 CMC-EPUB-20120607-22 [pii]

    Article  Google Scholar 

  • Nazir S, Hussain T, Ayub A, Rashid U, Macrobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine 10(1):19–34. doi:10.1016/j.nano.2013.07.001

    Google Scholar 

  • Pal SK, Childs BH, Pegram M (2011) Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 125(3):627–636. doi:10.1007/s10549-010-1293-1

    Article  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2011) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166. doi:10.1016/j.nano.2011.05.016

    Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. doi:10.1038/nnano.2007.387

    Article  Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. doi:10.1038/nrd2591

    Article  Google Scholar 

  • Schaffer CB, Friedman B, Nishimura N, Schroeder LF, Tsai PS, Ebner FF, Lyden PD, Kleinfeld D (2006) Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biol 4(2):e22. doi:10.1371/journal.pbio.0040022

    Article  Google Scholar 

  • Wang AZ, Langer R, Farokhzad OC (2011) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198. doi:10.1146/annurev-med-040210-162544

    Article  Google Scholar 

  • Yang Z, Kang SG, Zhou R (2013) Nanomedicine: de novo design of nanodrugs. Nanoscale 6(2):663–677. doi:10.1039/c3nr04535h

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Ciprian Husanu and Dr. Rupert Ecker from TissueGnostics for technical help in quantification of fluorescent signals. A particular thanks to Dr. Laura Confalonieri, Dr. Stefano Pezzati, and Dr. Annamaria Mauro from Hamamatsu Photonics Italia for the support in acquiring images. L.S. is indebted to a private donor who is funding his research. The authors are grateful to AIRC for support for this research with the Special Program Molecular Clinical Oncology “5 per mille.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Bigini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1740 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitia, L., Paolella, K., Romano, M. et al. An integrated approach for the systematic evaluation of polymeric nanoparticles in healthy and diseased organisms. J Nanopart Res 16, 2481 (2014). https://doi.org/10.1007/s11051-014-2481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2481-4

Keywords

Navigation