Skip to main content
Log in

Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In aquatic systems, fulvic acids (FAs) are expected to play key roles on the stability and aggregation behavior of manufactured nanoparticles (NPs). The exact conditions under which aggregation or dispersion occurs will depend on the nanoparticle surface charge properties, FAs concentration as well as solution conditions, such as pH and ionic strength. The systematic calculation of stability (aggregation versus disaggregation) diagrams is therefore a key aspect in the prediction of the environmental fate and behavior of manufactured nanoparticles in aquatic systems. In this study, the responses to changes in pH and FAs concentrations on the resulting surface charge of purified iron oxide nanoparticles (53 nm nominal diameter) is investigated. By adjusting the pH, different nanoparticle surface charge electrostatic regions are found, corresponding to positively, neutral, and negatively charged nanoparticle solutions. For each situation, the adsorption of negatively charged FAs at variable concentrations is considered by analyzing surface charge modifications and calculating experimental kinetics aggregation rates. Results show that, under the conditions used, and range of FAs environmental relevant conditions, the nanoparticle aggregation process is promoted only when the nanoparticle positive surface charge (solution pH less than the charge neutralization point) is compensated by the adsorption of FAs. In all the other cases, FAs adsorption and increase of FAs concentration are expected to promote not only the NPs stabilization but also the disaggregation of NPs aggregates. In addition, our study suggest that very low concentrations of FAs >0.1 mg/l are sufficient to rapidly stabilize iron hydroxide NPs solutions at concentration <5 mg/l.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiken GR (1985) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. Wiley, New York

    Google Scholar 

  • Amal R, Raper J, Waite T (1992) Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. J Colloid Interface Sci 151:244–257. doi:10.1016/0021-9797(92)90255-K

    Article  CAS  Google Scholar 

  • Averett RC (1995) Humic substances in the Suwannee river, interactions, properties, and proposed structures. United States Geological, Georgia

    Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101. doi:10.1016/j.scitotenv.2008.11.022

    Article  CAS  Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S et al (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27:1875–1882. doi:10.1897/07-559.1

    Article  CAS  Google Scholar 

  • Buffle J, Chalmers RA, Masson MR, Midgley D (1988) Complexation reactions in aquatic systems: an analytical approach. E. Horwood, Chichester

    Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S et al (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899

    Article  CAS  Google Scholar 

  • Carnal F, Stoll S (2011) Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations. J Phys Chem B 115:12007–12018. doi:10.1021/jp205616e

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523. doi:10.1021/es0518068

    Article  CAS  Google Scholar 

  • Cross KM, Lu Y, Zheng T et al (2009) Water decontamination using iron and iron oxide nanoparticles. Nanotechnol Appl Clean Water 347–364

  • Ferretti R, Stoll S, Zhang J, Buffle J (2003) Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan. J Colloid Interface Sci 266:328–338. doi:10.1016/S0021-9797(03)00527-7

    Article  CAS  Google Scholar 

  • Fidler MC, Walczyk T, Davidsson L et al (2004) A micronised, dispersible ferric pyrophosphate with high relative bioavailability in man. Br J Nutr 91:107–112

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:16/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  • He YT, Wan J, Tokunaga T (2007) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10:321–332. doi:10.1007/s11051-007-9255-1

    Article  Google Scholar 

  • Jones MN, Bryan ND (1998) Colloidal properties of humic substances. Adv Colloid Interface Sci 78:1–48. doi:16/S0001-8686(98)00058-X

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414. doi:10.1016/j.scitotenv.2008.06.042

    Article  CAS  Google Scholar 

  • Kadar E, Simmance F, Martin O et al (2010) The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification. Environ Pollut 158:3490–3497. doi:10.1016/j.envpol.2010.03.025

    Article  CAS  Google Scholar 

  • Kosmulski M (2002) The pH-dependent surface charging and the points of zero charge. J Colloid Interface Sci 253:77–87. doi:10.1006/jcis.2002.8490

    Article  CAS  Google Scholar 

  • Liang L, Morgan JJ (1990) Coagulation of iron oxide particles in the presence of organic materials: application of surface chemical model. ACS Symposium Series, American Chemical Society, Washington DC 416:293–308

  • Maurice PA, Namjesnik-Dejanovic K (1999) Aggregate structures of sorbed humic substances observed in aqueous solution. Environ Sci Technol 33:1538–1541. doi:10.1021/es981113+

    Article  CAS  Google Scholar 

  • Murphy EM, Zachara JM, Smith SC (1990) Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ Sci Technol 24:1507–1516. doi:10.1021/es00080a009

    Article  CAS  Google Scholar 

  • Ouali L, Pefferkorn E (1993) Polymer induced stabilization of colloids mechanism and kinetics. J Colloid Interface Sci 161:237–246. doi:10.1006/jcis.1993.1462

    Article  CAS  Google Scholar 

  • Pefferkorn E (1995) The role of polyelectrolytes in the stabilisation and destabilisation of colloids. Adv Colloid Interface Sci 56:33–104

    Article  CAS  Google Scholar 

  • Pefferkorn E, Stoll S (1990) Cluster fragmentation in electrolyte induced aggregation of latex. J Chem Phys 92:3112–3117. doi:10.1063/1.457910

    Article  CAS  Google Scholar 

  • Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nat Nano 2:535–536. doi:10.1038/nnano.2007.282

    Article  CAS  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832. doi:10.1097/00010694-200111000-00007

    Article  CAS  Google Scholar 

  • Santschi PH (1984) Particle flux and trace metal residence time in natural waters. Limnol Oceanogr 29:1100–1108

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory—preparation and characterization. VCH, Weinheim

    Google Scholar 

  • Seijo M, Ulrich S, Filella M et al (2009) Modeling the adsorption and coagulation of fulvic acids on colloids by Brownian dynamics simulations. Environ Sci Technol 43:7265–7269. doi:10.1021/es9002394

    Article  CAS  Google Scholar 

  • Shipley HJ, Engates KE, Guettner AM (2010) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13:2387–2397. doi:10.1007/s11051-010-9999-x

    Article  Google Scholar 

  • Stemmler SJ, Berthelin J (2003) Microbial activity as a major factor in the mobilization of iron in the humid tropics. Eur J Soil Sci 54:725–733. doi:10.1046/j.1351-0754.2003.0571.x

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Tipping E, Higgins DC (1982) The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloids Surf 5:85–92. doi:10.1016/0166-6622(82)80064-4

    Article  CAS  Google Scholar 

  • Watts RJ, Jones AP, Chen P-H, Kenny A (1997) Mineral-catalyzed fenton-like oxidation of sorbed chlorobenzenes. Water Environ Res 69:269–275

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433. doi:10.1007/s11051-005-6931-x

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332. doi:10.1023/A:1025520116015

    Article  CAS  Google Scholar 

  • Zhang J, Buffle J (1995) Kinetics of hematite aggregation by polyacrylic acid: importance of charge neutralization. J Colloid Interface Sci 174:500–509. doi:10.1006/jcis.1995.1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from the Swiss National Science Foundation, Research Project 200021-135240. The authors would like to thank Prof. P. Le Coustumer (Bordeaux University) for his support during the characterization of the FAs and hematite nanoparticles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Stoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomino, D., Stoll, S. Fulvic acids concentration and pH influence on the stability of hematite nanoparticles in aquatic systems. J Nanopart Res 15, 1428 (2013). https://doi.org/10.1007/s11051-013-1428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1428-5

Keywords

Navigation